Large Eddy Simulations in Magnetohydrodynamics Flows
磁流体动力学流动中的大涡模拟
基本信息
- 批准号:1522574
- 负责人:
- 金额:$ 18.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Magnetohydrodynamics describes the behavior of an electrically conducting fluid flow in the presence of magnetic fields. Electrically conducting fluids arise in applications including astrophysics, geophysics, plasma confinement, controlled thermonuclear fusion, liquid-metal cooling of nuclear reactors, electromagnetic casting of metals, ion thrusters for low orbiting satellites, magnetohydrodynamic drive for ships and submarines, microfluidic devices, and molecular biology. The fluid motion of the Earth's core maintains the terrestrial magnetic field, the solar magnetic field generates sunspots and solar flares, and the galactic magnetic field influences the formation of stars from interstellar clouds. These applications require substantially better modeling and simulation capabilities than presently exist. Problems without a clear scale separation, such as turbulence, are still at the frontier of multiscale modeling and simulation. When the fluid is electrically conducting, the turbulent fluid motions are accompanied by magnetic fluctuations. For Magnetohydrodynamic (MHD) turbulence, numerical simulations play a greater role than they play for hydrodynamic turbulence, since laboratory experiments are practically impossible and astrophysical systems (solar-wind turbulence, the most important system of high-Reynolds-number MHD accessible to in situ measurements) are too complex to be comparable with theoretical results. This research project will develop improved computational methods for these important problems.This research project studies mathematically rigorous and computationally efficient methods to analyze direct and inverse problems constrained by MHD models. This includes the numerical analysis of computational algorithms, implicit explicit time-stepping schemes using the Elsasser variables, post processing via time-filters, spatial linear and nonlinear filters, spectral filtering, development of spatial filters specific to MHD turbulence, optimal control, and parameter estimation. Another objective of this project is to investigate the mathematical properties of several models for the simulation of the large eddies in turbulent viscous, incompressible, electrically conducting flows and new numerical models that permit long-time simulations, by time-splitting. The project has a broad impact for training undergraduate and graduate students in analytical and numerical aspects of magnetohydrodynamics, turbulence, and inverse problems.
磁流体动力学描述了在磁场存在下导电流体流动的行为。导电流体出现在包括天体物理学、微物理学、等离子体约束、受控热核聚变、核反应堆的液态金属冷却、金属的电磁铸造、用于低轨道卫星的离子推进器、用于船舶和潜艇的磁流体动力学驱动、微流体装置和分子生物学的应用中。地球核心的流体运动维持地球磁场,太阳磁场产生太阳黑子和太阳耀斑,银河磁场影响星际云中恒星的形成。这些应用程序需要比目前更好的建模和仿真能力。没有明确的尺度分离的问题,如湍流,仍然处于多尺度建模和模拟的前沿。当流体导电时,湍流流体运动伴随着磁波动。对于磁流体动力学(MHD)湍流,数值模拟发挥了更大的作用,比他们发挥流体动力学湍流,因为实验室实验几乎是不可能的,天体物理系统(太阳风湍流,最重要的系统,高雷诺数MHD访问现场测量)太复杂,无法与理论结果进行比较。 本研究课题将针对这些重要问题开发更完善的计算方法,研究在MHD模型约束下的正问题和逆问题的数学分析方法。这包括计算算法的数值分析、使用Elsasser变量的隐式显式时间步进方案、通过时间滤波器的后处理、空间线性和非线性滤波器、光谱滤波、特定于MHD湍流的空间滤波器的开发、最优控制和参数估计。该项目的另一个目标是研究几种模型的数学特性,用于模拟湍流粘性、不可压缩、导电流中的大涡流,以及通过时间分裂进行长时间模拟的新数值模型。该项目对培养本科生和研究生在磁流体力学、湍流和逆问题的分析和数值方面具有广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catalin Trenchea其他文献
On Limiting Behavior of Contaminant Transport Models in Coupled Surface and Groundwater Flows
耦合地表水和地下水流中污染物迁移模型的极限行为
- DOI:
10.3390/axioms4040518 - 发表时间:
2015-11 - 期刊:
- 影响因子:2
- 作者:
William Layton;Marina Moraiti;Zhiyong Si;Catalin Trenchea - 通讯作者:
Catalin Trenchea
Efficient nonlinear filter stabilization of the Leray-emα/em model
勒雷 - 阿尔法模型的高效非线性滤波器稳定化
- DOI:
10.1016/j.jcp.2022.111668 - 发表时间:
2022-12-15 - 期刊:
- 影响因子:3.800
- 作者:
Aziz Takhirov;Catalin Trenchea - 通讯作者:
Catalin Trenchea
Catalin Trenchea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catalin Trenchea', 18)}}的其他基金
Collaborative Research: Time Accurate Fluid-Structure Interactions
合作研究:时间精确的流固耦合
- 批准号:
2208220 - 财政年份:2022
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
相似海外基金
Study of Dual-Jet Interference and Scalar Mixing using Direct Numerical and Large-Eddy Simulations
使用直接数值和大涡模拟研究双射流干涉和标量混合
- 批准号:
RGPIN-2019-06735 - 财政年份:2022
- 资助金额:
$ 18.3万 - 项目类别:
Discovery Grants Program - Individual
Numerical Study of Rectangular Supersonic Jet Screech with Large-Eddy Simulations
矩形超音速射流尖叫大涡模拟数值研究
- 批准号:
545830-2020 - 财政年份:2022
- 资助金额:
$ 18.3万 - 项目类别:
Postgraduate Scholarships - Doctoral
CDS&E: Reinforcement learning for robust wall models in large-eddy simulations
CDS
- 批准号:
2152705 - 财政年份:2022
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
Large-eddy simulations of complex turbulent flows
复杂湍流的大涡模拟
- 批准号:
RGPIN-2016-04391 - 财政年份:2022
- 资助金额:
$ 18.3万 - 项目类别:
Discovery Grants Program - Individual
Large-eddy simulations of complex turbulent flows
复杂湍流的大涡模拟
- 批准号:
RGPIN-2016-04391 - 财政年份:2021
- 资助金额:
$ 18.3万 - 项目类别:
Discovery Grants Program - Individual
Study of Dual-Jet Interference and Scalar Mixing using Direct Numerical and Large-Eddy Simulations
使用直接数值和大涡模拟研究双射流干涉和标量混合
- 批准号:
RGPIN-2019-06735 - 财政年份:2021
- 资助金额:
$ 18.3万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Understanding the Turbulent Dynamics of Convective Bursts and Tropical Cyclone Intensification Using Large Eddy Simulations and High-Order Numerics
合作研究:利用大涡模拟和高阶数值了解对流爆发和热带气旋增强的湍流动力学
- 批准号:
2121366 - 财政年份:2021
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Turbulent Dynamics of Convective Bursts and Tropical Cyclone Intensification Using Large Eddy Simulations and High-Order Numerics
合作研究:利用大涡模拟和高阶数值了解对流爆发和热带气旋增强的湍流动力学
- 批准号:
2121367 - 财政年份:2021
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
Numerical Study of Rectangular Supersonic Jet Screech with Large-Eddy Simulations
矩形超音速射流尖叫大涡模拟数值研究
- 批准号:
545830-2020 - 财政年份:2021
- 资助金额:
$ 18.3万 - 项目类别:
Postgraduate Scholarships - Doctoral
Numerical Study of Rectangular Supersonic Jet Screech with Large-Eddy Simulations
矩形超音速射流尖叫大涡模拟数值研究
- 批准号:
545830-2020 - 财政年份:2020
- 资助金额:
$ 18.3万 - 项目类别:
Postgraduate Scholarships - Doctoral














{{item.name}}会员




