CDS&E: Reinforcement learning for robust wall models in large-eddy simulations
CDS
基本信息
- 批准号:2152705
- 负责人:
- 金额:$ 33.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Simulations of wall-bounded turbulent flows have become a key element in the design cycle of wind farms and aircraft, and a major factor in the predictive capabilities of simulations of atmospheric flows. Due to the high Reynolds numbers associated with these flows, simulations resolving all scales of motion are not attainable with current computing capabilities. Specifically, wall models are necessary to overcome the prohibitive grid resolution requirements in the near-wall region. The abundance of data from experiments and simulations and the advent of machine learning have provided a boost to turbulence modeling efforts. However, simulations of turbulent flows remain hindered by the inability of heuristics and supervised learning to accurately model the near-wall dynamics. The principal aim of this project is to develop a robust wall model that can accurately predict the near-wall dynamics. The project will also encompass significant educational activities, including a multi-year undergraduate summer research program for the under-represented minority groups.The goal of the project is to develop a robust wall model for large-eddy simulations through reinforcement learning. Presently, the development of the state-of-the-art wall models relies on Reynolds-averaged Navier-Stokes parametrizations with an explicit or implicit assumption of a particular flow state close to the wall. These assumptions limit the robustness and applicability of the model and often lead to erroneous predictions of separation and laminar-to-turbulent transition, both of which are crucial components in external aerodynamics. By utilizing reinforcement learning methods, the project will allow the development of novel wall models that can adapt to various flow configurations based on the instantaneous flow input. The wall modeling problem will be cast as a control problem, where the discovered model is optimized to accurately reproduce the quantities of interest by automating the exploration of the relevant flow physics. The development of the proposed wall model will advance the state-of-the-art in the simulation of high-Reynolds-number turbulent flows in complex external aerodynamic applications. This will provide a means to obtain cheap and reliable simulations of complex flows such as flow over an aircraft.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
壁面湍流的模拟已经成为风电场和飞机设计周期中的一个关键因素,也是模拟大气流动预测能力的一个主要因素。由于与这些流动相关的高雷诺数,以目前的计算能力无法模拟解决所有尺度的运动。具体来说,壁面模型对于克服近壁面区域令人望而却步的网格分辨率要求是必要的。来自实验和模拟的大量数据以及机器学习的出现为湍流建模工作提供了推动力。然而,由于启发式和监督学习无法准确地模拟近壁动力学,湍流的模拟仍然受到阻碍。本项目的主要目的是建立一个能够准确预测近壁动力学的鲁棒壁面模型。该项目还将包括重要的教育活动,包括为代表性不足的少数群体提供的多年本科夏季研究项目。该项目的目标是通过强化学习开发用于大涡模拟的鲁棒壁面模型。目前,最先进的壁面模型的发展依赖于雷诺平均Navier-Stokes参数化,并明确或隐含地假设壁面附近的特定流动状态。这些假设限制了模型的鲁棒性和适用性,并经常导致分离和层流到湍流过渡的错误预测,这两者都是外部空气动力学的关键组成部分。通过利用强化学习方法,该项目将允许开发新的壁面模型,该模型可以根据瞬时流量输入适应各种流量配置。壁面建模问题将被视为一个控制问题,其中发现的模型被优化,通过自动化探索相关的流动物理来精确地再现感兴趣的数量。所提出的壁面模型的发展将推动复杂外部气动应用中高雷诺数湍流模拟的发展。这将提供一种廉价而可靠的模拟复杂气流的方法,例如飞机上空的气流。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Large-Eddy Simulation of Flow over Boeing Gaussian Bump Using Multi-Agent Reinforcement Learning Wall Model
使用多智能体强化学习墙模型对波音高斯凸块上的流动进行大涡模拟
- DOI:10.2514/6.2023-3985
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhou, Di;Whitmore, Michael P.;Griffin, Kevin P.;Bae, Hyunji Jane
- 通讯作者:Bae, Hyunji Jane
Sensitivity analysis of wall-modeled large-eddy simulation for separated turbulent flow
- DOI:10.1016/j.jcp.2024.112948
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Di Zhou;H. J. Bae
- 通讯作者:Di Zhou;H. J. Bae
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jane Bae其他文献
Jane Bae的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
海桑属杂种区强化(Reinforcement)的检验与遗传基础研究
- 批准号:30800060
- 批准年份:2008
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Standard Grant
CAREER: Stochasticity and Resilience in Reinforcement Learning: From Single to Multiple Agents
职业:强化学习中的随机性和弹性:从单个智能体到多个智能体
- 批准号:
2339794 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Continuing Grant
Learning to Reason in Reinforcement Learning
在强化学习中学习推理
- 批准号:
DP240103278 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Discovery Projects
Optimizing Intelligent Vehicular Routing with Edge Computing through Multi-Agent Reinforcement Learning
通过多智能体强化学习利用边缘计算优化智能车辆路由
- 批准号:
24K14913 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Towards Real-world Reinforcement Learning
职业:走向现实世界的强化学习
- 批准号:
2339395 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Continuing Grant
CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
- 批准号:
2339774 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Continuing Grant
Federated Reinforcement Learning Empowered Point Cloud Video Streaming
联合强化学习赋能点云视频流
- 批准号:
24K14927 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347422 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Standard Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Continuing Grant














{{item.name}}会员




