Summer Program on Conformal Geometry and Geometric PDE in Beijing

北京共形几何与几何偏微分方程暑期项目

基本信息

  • 批准号:
    1523119
  • 负责人:
  • 金额:
    $ 4.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-04-01 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

The International Workshop on Conformal Geometry and Geometric PDE will be held at the Beijing International Center for Mathematical Research (BICMR), Beijing, China, from June 22-July 3, 2015. This is a two-week summer program that has two parts. The first part is a summer school for graduate students. The summer school will offer 5 mini-courses taught by leading experts to cover important background as well as introduce frontier research topics in the field. The second part is a research conference to facilitate and promote exchanges and interactions, particularly among young researchers and leading experts in the field. BICMR, which will host the program, is committed to support collaborations fostered in this program. The program will stimulate more research in the field and foster collaborations between researchers from US and China.The research in conformal geometric PDE is one of the most active research fields in geometric PDE. There has been much exciting progress in the field ranging from important developments in nonlinear elliptic and parabolic PDE, to the better understanding of 4-manifolds that satisfy conformally invariant curvature equations like Bach-flatness. This progress also extends to further investigations on conformally compact Einstein manifolds that are essential to the mathematical foundation for the so-called AdS/CFT correspondence proposed in the promising theory of quantum gravity in theoretical physics. To absorb the impact of such breadth it is clearly desirable to have a program to bring together leading experts and young researchers to disseminate and digest the rapid advancements as well as nurture creative ideas for further developments in the field.The program website is at http://bicmr.pku.edu.cn/academic-year-2015/aygp/event-2.html
共形几何与几何偏微分方程国际研讨会将于2015年6月22日至7月3日在北京国际数学研究中心(BICMR)举行。这是一个为期两周的暑期课程,分为两部分。第一部分是研究生暑期学校。暑期学校将提供5门由顶尖专家讲授的迷你课程,涵盖重要背景,并介绍该领域的前沿研究课题。第二部分是一个研究会议,以促进和促进交流和互动,特别是在年轻研究人员和该领域的主要专家之间。BICMR将主办该项目,致力于支持该项目中培养的合作。共形几何偏微分方程的研究是几何偏微分方程中最活跃的研究领域之一。从非线性椭圆和抛物偏微分方程的重要发展,到对满足保形不变曲率方程(如Bach平坦性)的4-流形的更好理解,该领域已经取得了许多令人兴奋的进展。这一进展也延伸到共形紧致爱因斯坦流形的进一步研究,这对于理论物理中有前途的量子引力理论中提出的所谓AdS/CFT对应的数学基础至关重要。为了吸收这种广度的影响,显然需要有一个计划,将领先的专家和年轻的研究人员聚集在一起,传播和消化快速的进步,并为该领域的进一步发展培养创造性的想法。http://bicmr.pku.edu.cn/academic-year-2015/aygp/event-2.html

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jie Qing其他文献

On the renormalized volumes for conformally compact Einstein manifolds
关于共形紧爱因斯坦流形的重正化体积
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alice Chang;Jie Qing;Paul Yang
  • 通讯作者:
    Paul Yang
Targeted inhibition of the immunoproteasome blocks endothelial MHC class II antigen presentation to CD4sup+/sup T cells in chronic liver injury
免疫蛋白酶体的靶向抑制阻断了慢性肝损伤中内皮细胞 MHC II 类抗原向 CD4+T 细胞的呈递
  • DOI:
    10.1016/j.intimp.2022.108639
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    4.700
  • 作者:
    Yuwei Zhang;Xue Yang;Tao Bi;Xia Wu;Lu Wang;Yafeng Ren;Yangying Ou;Chengliang Xie;Kuangjie Li;Haolong Ran;Jing Wang;Fulan Zhao;Pixian Shui;Jie Qing
  • 通讯作者:
    Jie Qing
On nonnegatively curved hypersurfaces in $$\mathbb {H}^{n+1}$$
  • DOI:
    10.1007/s00208-018-1694-8
  • 发表时间:
    2018-05-21
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Vincent Bonini;Shiguang Ma;Jie Qing
  • 通讯作者:
    Jie Qing
Conformal holonomy equals ambient holonomy
适形完整性等于环境完整性
  • DOI:
    10.2140/pjm.2016.285.303
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    AP ANDREASˇC;A. R. O. G. Over;C. R. Obin;G. R. And;M. A. H. Ammerl;Paul Balmer;Robert Finn;Sorin Popa;Vyjayanthi Chari;Kefeng Liu;Igor Pak;Paul Yang;Daryl Cooper;Jiang;Jie Qing;Silvio Levy
  • 通讯作者:
    Silvio Levy
A note on conformal Ricci flow
关于共形 Ricci 流的注解
  • DOI:
    10.2140/pjm.2014.268.413
  • 发表时间:
    2011-09
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Peng Lu;Jie Qing;Yu Zheng
  • 通讯作者:
    Yu Zheng

Jie Qing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jie Qing', 18)}}的其他基金

Conformal Geometry, Partial Differential Equations, and Mathematical Relativity
共形几何、偏微分方程和数学相对论
  • 批准号:
    1608782
  • 财政年份:
    2016
  • 资助金额:
    $ 4.91万
  • 项目类别:
    Continuing Grant
Partial differential equations in conformal geometry
共形几何中的偏微分方程
  • 批准号:
    1303543
  • 财政年份:
    2013
  • 资助金额:
    $ 4.91万
  • 项目类别:
    Standard Grant
Summer Program in Mathematical Relativity in Beijing
北京数学相对论暑期项目
  • 批准号:
    1118566
  • 财政年份:
    2011
  • 资助金额:
    $ 4.91万
  • 项目类别:
    Standard Grant
Conformal geometry and partial differential equations
共形几何和偏微分方程
  • 批准号:
    1005295
  • 财政年份:
    2010
  • 资助金额:
    $ 4.91万
  • 项目类别:
    Standard Grant
Some problems in conformal geometry and General Relativity
共形几何和广义相对论的一些问题
  • 批准号:
    0700535
  • 财政年份:
    2007
  • 资助金额:
    $ 4.91万
  • 项目类别:
    Standard Grant
Geometric PDE in Confromal Geometry and Relativity
共形几何和相对论中的几何偏微分方程
  • 批准号:
    0402294
  • 财政年份:
    2004
  • 资助金额:
    $ 4.91万
  • 项目类别:
    Standard Grant
Research in Geometrical PDE
几何偏微分方程研究
  • 批准号:
    0103160
  • 财政年份:
    2001
  • 资助金额:
    $ 4.91万
  • 项目类别:
    Standard Grant
Research in Geometric Analysis
几何分析研究
  • 批准号:
    9803399
  • 财政年份:
    1998
  • 资助金额:
    $ 4.91万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Resesrch Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9407646
  • 财政年份:
    1994
  • 资助金额:
    $ 4.91万
  • 项目类别:
    Fellowship Award

相似海外基金

REU Site: The DUB REU Program for Human-Centered Computing Research
REU 网站:DUB REU 以人为中心的计算研究计划
  • 批准号:
    2348926
  • 财政年份:
    2024
  • 资助金额:
    $ 4.91万
  • 项目类别:
    Standard Grant
REU Site: Summer Research Program for Community College and Liberal Arts College Students in Physics and Astronomy
REU 网站:社区学院和文理学院学生物理和天文学夏季研究计划
  • 批准号:
    2349111
  • 财政年份:
    2024
  • 资助金额:
    $ 4.91万
  • 项目类别:
    Continuing Grant
Collaborative Research: REU Site: Summer Undergraduate Research Program in RNA and Genome Biology (REU-RGB)
合作研究:REU 网站:RNA 和基因组生物学暑期本科生研究计划 (REU-RGB)
  • 批准号:
    2349255
  • 财政年份:
    2024
  • 资助金额:
    $ 4.91万
  • 项目类别:
    Continuing Grant
Understanding Teacher Effectiveness and Retention Among Single Subject Math Program Completers in the First Five Years of Teaching
了解教师在教学前五年的效率和单科数学课程完成者的保留率
  • 批准号:
    2345187
  • 财政年份:
    2024
  • 资助金额:
    $ 4.91万
  • 项目类别:
    Continuing Grant
Conference: Early Career Development (CAREER) Program Workshop for STEM Education Research at Minority-Serving Institutions
会议:少数族裔服务机构 STEM 教育研究早期职业发展 (CAREER) 计划研讨会
  • 批准号:
    2400690
  • 财政年份:
    2024
  • 资助金额:
    $ 4.91万
  • 项目类别:
    Standard Grant
A cluster randomized controlled trial to evaluate pharmacy-based health promotion program to improve blood pressure control in Bangladesh, India and Pakistan
一项整群随机对照试验,旨在评估孟加拉国、印度和巴基斯坦基于药房的健康促进计划,以改善血压控制
  • 批准号:
    23K24566
  • 财政年份:
    2024
  • 资助金额:
    $ 4.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Cultivating Diversity Awareness in Japanese Med Schools with a foreign Standardized Patient program
通过外国标准化患者计划培养日本医学院的多样性意识
  • 批准号:
    24K13361
  • 财政年份:
    2024
  • 资助金额:
    $ 4.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: The Polymath Jr Program
会议:小博学者计划
  • 批准号:
    2341670
  • 财政年份:
    2024
  • 资助金额:
    $ 4.91万
  • 项目类别:
    Continuing Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
  • 批准号:
    2409274
  • 财政年份:
    2024
  • 资助金额:
    $ 4.91万
  • 项目类别:
    Standard Grant
Creating a Grow-Your-Own Program for Recruiting and Supporting Computer Science Teacher Candidates in Rural Georgia
创建一个自己成长的计划,用于招募和支持佐治亚州农村地区的计算机科学教师候选人
  • 批准号:
    2344678
  • 财政年份:
    2024
  • 资助金额:
    $ 4.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了