Research in Geometric Analysis
几何分析研究
基本信息
- 批准号:9803399
- 负责人:
- 金额:$ 7.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-15 至 2001-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractProposal: DMS 9803399Principal Investigator: Jie QingThe proposed project consists of two related research topics. Thefirst is focused in the investigations in developing and usingnonlinear analysis of partial differential equations to studyformations of singularities in various problems, arising fromtheoretical physics mostly in differential geometrical settings,including harmonic maps, Yang-Mills-Higgs theory, harmonic map flows,and curvature driven flows. The main approach is based on scalingmethods. One problem that I am working on now is to understand somefiner structure of the compactified spaces of solutions (harmonicmaps). This is an essential problem for one to understand theformation and nature of singularities. The second part is theinvestigation of the interplay of geometry and analysis. The centralproblems are to understand the best constants in sharp Sobolev typeinequalities in terms of the isoperimetric constants, and tounderstand how the local analytic quantities are related to the globalgeometry even the topology. One of the approach is to study thespectral theory of various natural differential operators associatedwith the geometry, especially the conformally covariant geometricdifferential operators.The formation and nature of singularities in nature are of enormous interests to human beings. The kind of singularities that will be studied in the proposed project are particularly of great interests to the material sciences and meteorology. For instance, the formation and nature of singularities in Ginzburg-Landau problems as a particular case of the Yang-Mills-Higgs theory was proposed to study super-conductivity and other super-fluids phenomena. The effect of the scale that one uses to describe the system turns out to be very important. This explains that to understand anything that survives under changes of scales is very crucial. Therefore our main approach is based on the scaling methods. The second research topics in the proposed project is basically aiming at developing and understanding some mathematical tools that are expected to be essential for the first topics. The proposed project is also closely tied with the graduate program in the department of Mathematics at UCSC by a plan to generate research activities to the benefit of graduate student interested in this area.
摘要提案:DMS 9803399 项目负责人:杰青该项目由两个相关的研究课题组成。 第一个重点是开发和使用偏微分方程的非线性分析来研究各种问题中奇点的形成,这些问题主要来自微分几何背景下的理论物理,包括调和映射、杨-米尔斯-希格斯理论、调和映射流和曲率驱动流。 主要方法是基于缩放方法。 我现在正在研究的一个问题是理解解的压缩空间(调和图)的某种更精细的结构。 这是理解奇点的形成和性质的一个重要问题。 第二部分是几何与分析相互作用的研究。 中心问题是理解等周常数的尖锐索博列夫型不等式中的最佳常数,并理解局部解析量如何与全局几何甚至拓扑相关。 其中一种途径是研究与几何相关的各种自然微分算子的谱理论,特别是共形协变几何微分算子。自然界奇点的形成和性质引起了人类的巨大兴趣。 拟议项目中将研究的奇点类型对材料科学和气象学尤其感兴趣。 例如,金兹堡-朗道问题中奇点的形成和性质作为杨-米尔斯-希格斯理论的一个特例,被提出来研究超导和其他超流体现象。 事实证明,用来描述系统的规模的效果非常重要。 这说明了解任何在尺度变化下生存的事物是非常重要的。 因此,我们的主要方法是基于缩放方法。 拟议项目中的第二个研究主题基本上旨在开发和理解一些数学工具,这些工具预计对第一个主题至关重要。 拟议的项目还与 UCSC 数学系的研究生项目密切相关,计划开展研究活动,以造福于对该领域感兴趣的研究生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Qing其他文献
On the renormalized volumes for conformally compact Einstein manifolds
关于共形紧爱因斯坦流形的重正化体积
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Alice Chang;Jie Qing;Paul Yang - 通讯作者:
Paul Yang
Targeted inhibition of the immunoproteasome blocks endothelial MHC class II antigen presentation to CD4sup+/sup T cells in chronic liver injury
免疫蛋白酶体的靶向抑制阻断了慢性肝损伤中内皮细胞 MHC II 类抗原向 CD4+T 细胞的呈递
- DOI:
10.1016/j.intimp.2022.108639 - 发表时间:
2022-06-01 - 期刊:
- 影响因子:4.700
- 作者:
Yuwei Zhang;Xue Yang;Tao Bi;Xia Wu;Lu Wang;Yafeng Ren;Yangying Ou;Chengliang Xie;Kuangjie Li;Haolong Ran;Jing Wang;Fulan Zhao;Pixian Shui;Jie Qing - 通讯作者:
Jie Qing
On nonnegatively curved hypersurfaces in $$\mathbb {H}^{n+1}$$
- DOI:
10.1007/s00208-018-1694-8 - 发表时间:
2018-05-21 - 期刊:
- 影响因子:1.400
- 作者:
Vincent Bonini;Shiguang Ma;Jie Qing - 通讯作者:
Jie Qing
Conformal holonomy equals ambient holonomy
适形完整性等于环境完整性
- DOI:
10.2140/pjm.2016.285.303 - 发表时间:
2015 - 期刊:
- 影响因子:0.6
- 作者:
AP ANDREASˇC;A. R. O. G. Over;C. R. Obin;G. R. And;M. A. H. Ammerl;Paul Balmer;Robert Finn;Sorin Popa;Vyjayanthi Chari;Kefeng Liu;Igor Pak;Paul Yang;Daryl Cooper;Jiang;Jie Qing;Silvio Levy - 通讯作者:
Silvio Levy
A note on conformal Ricci flow
关于共形 Ricci 流的注解
- DOI:
10.2140/pjm.2014.268.413 - 发表时间:
2011-09 - 期刊:
- 影响因子:0.6
- 作者:
Peng Lu;Jie Qing;Yu Zheng - 通讯作者:
Yu Zheng
Jie Qing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Qing', 18)}}的其他基金
Conformal Geometry, Partial Differential Equations, and Mathematical Relativity
共形几何、偏微分方程和数学相对论
- 批准号:
1608782 - 财政年份:2016
- 资助金额:
$ 7.02万 - 项目类别:
Continuing Grant
Summer Program on Conformal Geometry and Geometric PDE in Beijing
北京共形几何与几何偏微分方程暑期项目
- 批准号:
1523119 - 财政年份:2015
- 资助金额:
$ 7.02万 - 项目类别:
Standard Grant
Partial differential equations in conformal geometry
共形几何中的偏微分方程
- 批准号:
1303543 - 财政年份:2013
- 资助金额:
$ 7.02万 - 项目类别:
Standard Grant
Summer Program in Mathematical Relativity in Beijing
北京数学相对论暑期项目
- 批准号:
1118566 - 财政年份:2011
- 资助金额:
$ 7.02万 - 项目类别:
Standard Grant
Conformal geometry and partial differential equations
共形几何和偏微分方程
- 批准号:
1005295 - 财政年份:2010
- 资助金额:
$ 7.02万 - 项目类别:
Standard Grant
Some problems in conformal geometry and General Relativity
共形几何和广义相对论的一些问题
- 批准号:
0700535 - 财政年份:2007
- 资助金额:
$ 7.02万 - 项目类别:
Standard Grant
Geometric PDE in Confromal Geometry and Relativity
共形几何和相对论中的几何偏微分方程
- 批准号:
0402294 - 财政年份:2004
- 资助金额:
$ 7.02万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Resesrch Fellowship
数学科学:博士后研究奖学金
- 批准号:
9407646 - 财政年份:1994
- 资助金额:
$ 7.02万 - 项目类别:
Fellowship Award
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaboration Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133851 - 财政年份:2022
- 资助金额:
$ 7.02万 - 项目类别:
Standard Grant
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133822 - 财政年份:2022
- 资助金额:
$ 7.02万 - 项目类别:
Standard Grant
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133861 - 财政年份:2022
- 资助金额:
$ 7.02万 - 项目类别:
Standard Grant
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133806 - 财政年份:2022
- 资助金额:
$ 7.02万 - 项目类别:
Standard Grant
Collaborative Research: Geometric Analysis, Monopoles, and Applications to Low-Dimensional Manifolds
合作研究:几何分析、单极子以及低维流形的应用
- 批准号:
2104871 - 财政年份:2021
- 资助金额:
$ 7.02万 - 项目类别:
Standard Grant
Collaborative Research: Geometric Analysis, Monopoles, and Applications to Low-Dimensional Manifolds
合作研究:几何分析、单极子以及低维流形的应用
- 批准号:
2104865 - 财政年份:2021
- 资助金额:
$ 7.02万 - 项目类别:
Standard Grant
Research on Categorical Data Analysis Method based on Geometric interpretation of Data
基于数据几何解释的分类数据分析方法研究
- 批准号:
20K02162 - 财政年份:2020
- 资助金额:
$ 7.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Geometric Harmonic Analysis in Learning and Inference: Theory and Applications
合作研究:学习和推理中的几何调和分析:理论与应用
- 批准号:
1854831 - 财政年份:2019
- 资助金额:
$ 7.02万 - 项目类别:
Continuing Grant
Collaborative Research: Geometric Harmonic Analysis in Learning and Inference: Theory and Applications
合作研究:学习和推理中的几何调和分析:理论与应用
- 批准号:
1854791 - 财政年份:2019
- 资助金额:
$ 7.02万 - 项目类别:
Continuing Grant
A Differential Geometric Research on the Construction of Highly Connected Graphs Applicable to Big Data Analysis
适用于大数据分析的高连通图构建的微分几何研究
- 批准号:
19K23411 - 财政年份:2019
- 资助金额:
$ 7.02万 - 项目类别:
Grant-in-Aid for Research Activity Start-up