III: Small: Real-Time Detection of Structures from a Massive Graph Stream
III:小:从海量图流中实时检测结构
基本信息
- 批准号:1527541
- 负责人:
- 金额:$ 49.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There is an urgent need to quickly derive actionable intelligence from increasingly large volumes of data. In many domains, including social media analytics and cybersecurity, data contains relationships between entities that can be modeled using a graph, and a question on detecting patterns in data can be transformed into questions on detecting emerging structures in appropriately derived graphs. The goal of this project is to develop algorithms and software for finding significant structures from dynamic graphs in real-time. The project will develop algorithms that are efficient in their use of CPU and memory, and whose performance can be quantified in a mathematically rigorous way. The project will also develop implementations that are expected to process data at a highthroughput and can identify emerging structures much faster than current methods. The availability of these methods and implementations will impact the domains of cybersecurity and social network analytics. Software developed will be released as a toolkit of operators that can be used with current stream processing systems. The project will lead to new instructional material in existing courses as well as new courses in data analytics, involve individuals from underrepresented groups, and forge research collaborations with industrial research labs.The project will consider data that contains an evolving dynamic graph, and develop methods for detecting and enumerating change in the set of (1) dense combinatorial structures such as maximal cliques, quasi-cliques, maximal bicliques and quasi-bicliques in a graph, and (2) temporal structures such as temporal paths and temporal cliques in a time-stamped graph. While there has been significant progress in methods for detecting structures in a massive static graph, the same is not true for a dynamic graph, and often, the state-of-the-art for a dynamic graph is to repeatedly execute a method designed for a static graph. For enumerating the change in the set of structures, the project will take a novel approach of developing change-sensitive algorithms whose processing cost is proportional to the magnitude of change in the set of structures. It will use techniques from the area of approximation algorithms in designing (space and time) efficient methods for enumerating temporal structures from a graph stream. For further information, see the project web site at: http://www.ece.iastate.edu/~snt/nsf-iis2015/
迫切需要从越来越多的数据中快速得出可行的智能。在许多领域(包括社交媒体分析和网络安全)中,数据包含可以使用图形建模的实体之间的关系,并且可以将检测数据中检测模式的问题转换为有关在适当派生的图中检测新兴结构的问题。该项目的目的是开发算法和软件,以实时从动态图中查找重要结构。该项目将开发出有效使用CPU和内存的算法,并且可以以数学上严格的方式量化其性能。该项目还将开发预期将在高关注点处理数据的实现,并且可以比当前方法快得多地识别新兴结构。这些方法和实现的可用性将影响网络安全和社交网络分析的领域。开发的软件将作为运算符工具包发布,可与当前的流处理系统一起使用。 The project will lead to new instructional material in existing courses as well as new courses in data analytics, involve individuals from underrepresented groups, and forge research collaborations with industrial research labs.The project will consider data that contains an evolving dynamic graph, and develop methods for detecting and enumerating change in the set of (1) dense combinatorial structures such as maximal cliques, quasi-cliques, maximal图中的双晶和准双晶词,以及(2)时间stamp图中的时间路径和时间簇等时间结构。 尽管在大量静态图中检测结构的方法取得了重大进展,但对于动态图而言并非如此,而且通常,动态图的最新图像是重复执行为静态图设计的方法。为了列举结构集的变化,该项目将采用一种新的方法来开发对变更敏感的算法的处理算法,其处理成本与结构集的变化幅度成正比。它将在设计(时空和时间)有效方法中使用近似算法区域的技术来从图流列出时间结构。有关更多信息,请参见项目网站:http://www.ece.iastate.edu/~snt/nsf-iis2015/
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Incremental Maintenance of Maximal Bicliques in a Dynamic Bipartite Graph
- DOI:10.1109/tmscs.2018.2802920
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:A. Das;Srikanta Tirthapura
- 通讯作者:A. Das;Srikanta Tirthapura
Weighted Reservoir Sampling from Distributed Streams
从分布式流中进行加权水库采样
- DOI:10.1145/3294052.3319696
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Jayaram, Rajesh;Sharma, Gokarna;Tirthapura, Srikanta;Woodruff, David P.
- 通讯作者:Woodruff, David P.
Work-efficient parallel union-find: Work-efficient parallel union-find
高效工作的并行联合查找: 高效工作的并行联合查找
- DOI:10.1002/cpe.4333
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Simsiri, Natcha;Tangwongsan, Kanat;Tirthapura, Srikanta;Wu, Kun-Lung
- 通讯作者:Wu, Kun-Lung
Stratified Random Sampling over Streaming and Stored Data
对流数据和存储数据进行分层随机采样
- DOI:10.5441/002/edbt.2019.04
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Nguyen, T;Shih, M;Srivastava, D;Tirthapura, S
- 通讯作者:Tirthapura, S
Incremental maintenance of maximal cliques in a dynamic graph
- DOI:10.1007/s00778-019-00540-5
- 发表时间:2016-01
- 期刊:
- 影响因子:0
- 作者:A. Das;Michael Svendsen;Srikanta Tirthapura
- 通讯作者:A. Das;Michael Svendsen;Srikanta Tirthapura
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Goce Trajcevski其他文献
A Probabilistic Framework for Land Deformation Prediction (Student Abstract)
土地变形预测的概率框架(学生摘要)
- DOI:
10.1609/aaai.v36i11.21637 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Rongfang Li;Fan Zhou;Goce Trajcevski;Kunpeng Zhang;Ting Zhong - 通讯作者:
Ting Zhong
Uncertainty in Spatial Trajectories
- DOI:
10.1007/978-1-4614-1629-6_3 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Goce Trajcevski - 通讯作者:
Goce Trajcevski
Crawler
履带式
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Kenneth A. Ross;C. S. Jensen;R. Snodgrass;C. Dyreson;Spiros Skiadopoulos;Cristina Sirangelo;M. Larsgaard;G. Grahne;Daniel Kifer;Hans;H. Hinterberger;Alin Deutsch;Alan Nash;K. Wada;W. M. P. Aalst;C. Dyreson;P. Mitra;Ian H. Witten;Bing Liu;Charu C. Aggarwal;M. Tamer Özsu;Chimezie Ogbuji;Chintan Patel;Chunhua Weng;A. Wright;Amnon Shabo (Shvo);Dan Russler;R. A. Rocha;Yves A. Lussier;James L. Chen;Mohammed J. Zaki;Antonio Corral;Michael Vassilakopoulos;Dimitrios Gunopulos;Dietmar Wolfram;S. Venkatasubramanian;Michalis Vazirgiannis;Ian Davidson;Sunita Sarawagi;Liam Peyton;Gregory D. Speegle;Victor Vianu;Dirk Van Gucht;Opher Etzion;Francisco Curbera;AnnMarie Ericsson;Mikael Berndtsson;J. Mellin;P. Gray;Goce Trajcevski;Ouri Wolfson;Peter Scheuermann;Chitra Dorai;Michael Weiner;A. Borgida;J. Mylopoulos;Gottfried Vossen;A. Reuter;Val Tannen;S. Elnikety;Alan Fekete;L. Bertossi;F. Geerts;Wenfei Fan;T. Westerveld;Cathal Gurrin;Jaana Kekäläinen;Paavo Arvola;Marko Junkkari;Kyriakos Mouratidis;Jeffrey Xu Yu;Yong Yao;John F. Gehrke;S. Babu;N. Palmer;C. Leung;Michael W. Carroll;Aniruddha S. Gokhale;Mourad Ouzzani;Brahim Medjahed;Ahmed K. Elmagarmid;S. Manegold;Graham Cormode;Serguei Mankovskii;Donghui Zhang;Theo Härder;Wei Gao;Cheng Niu;Qing Li;Yu Yang;Payam Refaeilzadeh;Lei Tang;Huan Liu;Torben Bach Pedersen;Konstantinos Morfonios;Y. Ioannidis;Michael H. Böhlen;R. Snodgrass;Lei Chen - 通讯作者:
Lei Chen
Compression of Spatio-temporal Data
- DOI:
10.1109/mdm.2016.80 - 发表时间:
2016-06 - 期刊:
- 影响因子:0
- 作者:
Goce Trajcevski - 通讯作者:
Goce Trajcevski
Processing (Multiple) Spatio-temporal Range Queries in Multicore Settings
在多核设置中处理(多个)时空范围查询
- DOI:
10.1007/978-3-642-23737-9_16 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Goce Trajcevski;Anan Yaagoub;P. Scheuermann - 通讯作者:
P. Scheuermann
Goce Trajcevski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Goce Trajcevski', 18)}}的其他基金
Collaborative Research: SWIFT: LARGE: Dynamics and Security Aware Predictive Spectrum Sharing with Active and Passive Users
协作研究:SWIFT:大型:与主动和被动用户进行动态和安全感知预测频谱共享
- 批准号:
2030249 - 财政年份:2021
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Conference on Advances in Geographic Information Systems 2019: Student Activities and U.S.-Based Students Support
2019 年地理信息系统进展会议:学生活动和美国学生支持
- 批准号:
1953829 - 财政年份:2020
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Student Support for 2017 International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL 2017)
2017 年地理信息系统进展国际会议 (ACM SIGSPATIAL 2017) 的学生支持
- 批准号:
1745399 - 财政年份:2017
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
III: Large: Collaborative Research: Moving Objects Databases for Exploration of Virtual and Real Environments
III:大型:协作研究:用于探索虚拟和现实环境的移动对象数据库
- 批准号:
1823267 - 财政年份:2017
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Mapping and Querying Underground Infrastructure Systems
CPS:协同:协作研究:测绘和查询地下基础设施系统
- 批准号:
1823279 - 财政年份:2017
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Multicore to Wide Area Analytics on Streaming Data
SPX:协作研究:流数据的多核到广域分析
- 批准号:
1725702 - 财政年份:2017
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Mapping and Querying Underground Infrastructure Systems
CPS:协同:协作研究:测绘和查询地下基础设施系统
- 批准号:
1646107 - 财政年份:2016
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
III: Large: Collaborative Research: Moving Objects Databases for Exploration of Virtual and Real Environments
III:大型:协作研究:用于探索虚拟和现实环境的移动对象数据库
- 批准号:
1213038 - 财政年份:2012
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
NeTS: Large:Collaborative Research: Context-Driven Management of Heterogeneous Sensor Networks
NetS:大型:协作研究:异构传感器网络的上下文驱动管理
- 批准号:
0910952 - 财政年份:2009
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
相似国自然基金
SERT-nNOS蛋白相互作用的结构基础及其小分子互作抑制剂的设计、合成及快速抗抑郁活性研究
- 批准号:82373728
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
APOE调控小胶质细胞脂代谢模式在ASD认知和社交损伤中的作用及机制研究
- 批准号:82373597
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小胶质细胞外泌体通过miR-486抑制神经元铁死亡介导电针修复脊髓损伤的机制研究
- 批准号:82360454
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
CUL4B正反馈调控FOXO3a-FOXM1通路促进非小细胞肺癌放疗抵抗的机制研究
- 批准号:82360584
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
葡萄糖饥饿条件下AMPK-CREB-PPA1信号通路促进非小细胞肺癌细胞增殖的分子机制研究
- 批准号:82360518
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
- 批准号:
2311990 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
III:Small: A novel machine learning framework for combating misinformation in real life
III:Small:一种新颖的机器学习框架,用于打击现实生活中的错误信息
- 批准号:
2226087 - 财政年份:2022
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Resilience Analysis for Core Decomposition in Real-World Networks
III:小:协作研究:现实世界网络中核心分解的弹性分析
- 批准号:
1910063 - 财政年份:2019
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Resilience Analysis for Core Decomposition in Real-World Networks
III:小:协作研究:现实世界网络中核心分解的弹性分析
- 批准号:
1908048 - 财政年份:2019
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Improving Anticoagulation Monitoring in Pediatric Patients: Use of a Microfluidic Platform to Test Low Volume Blood Samples Obtained by Heel-Stick Collection
改善儿科患者的抗凝监测:使用微流体平台测试通过跟棒采集获得的少量血液样本
- 批准号:
10400164 - 财政年份:2018
- 资助金额:
$ 49.99万 - 项目类别: