III: Large: Collaborative Research: Moving Objects Databases for Exploration of Virtual and Real Environments

III:大型:协作研究:用于探索虚拟和现实环境的移动对象数据库

基本信息

  • 批准号:
    1823267
  • 负责人:
  • 金额:
    $ 10.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-16 至 2019-09-30
  • 项目状态:
    已结题

项目摘要

Researchers at Florida International University (IIS-1213026), University of Illinois at Chicago (IIS-1213013), Brown University (IIS-1212508), and Northwestern University (IIS-1213038) are developing a high-performance model for information processing and fusion in mobile environments, providing a collaborative integration between the real and virtual worlds. This model, applicable to the fields of computational transportation and mobile sensing, enables querying and visualization of moving objects data (MOD) and their relationship to static and dynamic geospatial data. Research project addresses the issues of: balancing the processing of location-based data streams coming into MOD servers with efficient processing of visualization-related queries; determining optimal distribution of queries/tasks among multiple regional servers; maximizing the scalability of prediction techniques in terms of efficient management of objects' data and queries; modeling data uncertainty; coupling map generalization with trajectories' data reduction when zooming across different scales; resolving issues of privacy and security; and enabling semantic querying. A demonstration of the outcomes is available within the TerraFly testbed (http://TerraFly.fiu.edu) -- a public Geographic Information System (GIS) mapping engine and location-based data repository.This work explores the novel steps towards combining the real and virtual worlds, an emerging research frontier. The virtual world is relatively well understood, but the combination of the real and virtual poses great challenges and promises transformative results with high potential payoff, including in-car navigation systems, massive fleets of mobile sensors, self-navigating vehicles, situation command, and location-based services. While advancing Computer Science, the project also leverages prior investment of, and provides direct benefit to, NSF, NASA, DoI, DoT, DHS, and other stakeholders such as the NSF EarthCube project. By improving the efficiency of spatial, temporal, and moving object data management and making these results available to constituencies via TerraFly, EarthCube and other venues, the project will produce societal benefits. This project provides a foundation for improving the quality of services in multiple applications such as disaster management, environmental monitoring, transportation, education, and logistics. The resulting technologies may serve as a base to advance research on self-navigating vehicles, robots, and mobile sensors. In particular, this work facilitates the technologies of Informed Traveler Programs, dynamic navigation, situation control, and airborne observational systems. The project provides rich educational and research opportunities for students from the collaborating institutions -- including underrepresented students. In addition, educational modules are developed, and research results will be incorporated in curriculum expansions. Further information is available at the project's website (http://CAKE.fiu.edu/MOD).
佛罗里达国际大学(IIS-1213026)的研究人员,伊利诺伊大学的芝加哥大学(IIS-1213013),布朗大学(IIS-1212508)和西北大学(IIS-1212508)和西北大学(IIS-1213038)正在开发一个在移动环境中提供信息处理和融合的高度性能模型,以提供一个合作的整合和真实的整合。该模型适用于计算传输和移动传感的领域,可以对移动对象数据(MOD)进行查询和可视化及其与静态和动态的地理空间数据的关系。研究项目解决了以下问题:通过有效处理与可视化相关的查询的有效处理,平衡将基于位置的数据流处理进入MOD服务器的问题;确定多个区域服务器之间查询/任务的最佳分布;根据对象的数据和查询有效管理预测技术的可扩展性;建模数据不确定性;在跨不同尺度放大时,将映射概括与轨迹的数据减少相结合;解决隐私和安全问题;并启用语义查询。在Terrafly TestBED(http://terrafly.fiu.edu)中提供了结果的证明 - 公共地理信息系统(GIS)映射引擎和基于位置的数据存储库。这项工作探讨了结合真实和虚拟世界的新颖步骤,这是一个真正的研究,这是一个新兴的研究。虚拟世界已经相对良好地理解,但是真实和虚拟的结合构成了巨大的挑战,并承诺具有高潜在的回报,包括车内导航系统,大量移动传感器机队,自动化的车辆,情况命令和基于位置的服务。在推进计算机科学的同时,该项目还利用了NSF,NASA,DOI,DOT,DHS和其他利益相关者(例如NSF EarthCube Project)的先前投资,并为NSF,NASA,DOI,DOT,DHS和其他利益提供了直接利益。通过提高空间,时间和移动对象数据管理的效率,并通过Terrafly,EarthCube和其他场所为选区提供这些结果,该项目将产生社会利益。该项目为改善灾难管理,环境监测,运输,教育和物流等多个应用程序的服务质量提供了基础。最终的技术可以作为推进对自动化车辆,机器人和移动传感器的研究的基础。特别是,这项工作促进了知情旅行者计划,动态导航,情况控制和空降观察系统的技术。该项目为合作机构的学生提供了丰富的教育和研究机会,包括代表性不足的学生。此外,开发了教育模块,研究结果将纳入课程扩展中。更多信息可在项目网站(http://cake.fiu.edu/mod)上获得。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Information Diffusion Prediction via Recurrent Cascades Convolution
LaCAVR: Load and Constraints Aware Vehicle Rerouting
LaCAVR:负载和约束感知车辆重新路由
  • DOI:
    10.1109/mdm.2019.00-32
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bis, David;Bix, Noah;Gruman, Benjamin;Guenette, Sam;Hauge, Adam;Moser, Hannah;Paul, Jimmy;Trajcevski, Goce
  • 通讯作者:
    Trajcevski, Goce
Adversarial Point-of-Interest Recommendation
  • DOI:
    10.1145/3308558.3313609
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fan Zhou;Ruiyang Yin;Kunpeng Zhang;Goce Trajcevski;Ting Zhong;Jin Wu
  • 通讯作者:
    Fan Zhou;Ruiyang Yin;Kunpeng Zhang;Goce Trajcevski;Ting Zhong;Jin Wu
Disentangled Network Alignment with Matching Explainability
Variational Session-based Recommendation Using Normalizing Flows
  • DOI:
    10.1145/3308558.3313615
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fan Zhou;Zijing Wen;Kunpeng Zhang;Goce Trajcevski;Ting Zhong
  • 通讯作者:
    Fan Zhou;Zijing Wen;Kunpeng Zhang;Goce Trajcevski;Ting Zhong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Goce Trajcevski其他文献

A Probabilistic Framework for Land Deformation Prediction (Student Abstract)
土地变形预测的概率框架(学生摘要)
  • DOI:
    10.1609/aaai.v36i11.21637
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rongfang Li;Fan Zhou;Goce Trajcevski;Kunpeng Zhang;Ting Zhong
  • 通讯作者:
    Ting Zhong
Uncertainty in Spatial Trajectories
  • DOI:
    10.1007/978-1-4614-1629-6_3
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Goce Trajcevski
  • 通讯作者:
    Goce Trajcevski
Compression of Spatio-temporal Data
Crawler
履带式
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kenneth A. Ross;C. S. Jensen;R. Snodgrass;C. Dyreson;Spiros Skiadopoulos;Cristina Sirangelo;M. Larsgaard;G. Grahne;Daniel Kifer;Hans;H. Hinterberger;Alin Deutsch;Alan Nash;K. Wada;W. M. P. Aalst;C. Dyreson;P. Mitra;Ian H. Witten;Bing Liu;Charu C. Aggarwal;M. Tamer Özsu;Chimezie Ogbuji;Chintan Patel;Chunhua Weng;A. Wright;Amnon Shabo (Shvo);Dan Russler;R. A. Rocha;Yves A. Lussier;James L. Chen;Mohammed J. Zaki;Antonio Corral;Michael Vassilakopoulos;Dimitrios Gunopulos;Dietmar Wolfram;S. Venkatasubramanian;Michalis Vazirgiannis;Ian Davidson;Sunita Sarawagi;Liam Peyton;Gregory D. Speegle;Victor Vianu;Dirk Van Gucht;Opher Etzion;Francisco Curbera;AnnMarie Ericsson;Mikael Berndtsson;J. Mellin;P. Gray;Goce Trajcevski;Ouri Wolfson;Peter Scheuermann;Chitra Dorai;Michael Weiner;A. Borgida;J. Mylopoulos;Gottfried Vossen;A. Reuter;Val Tannen;S. Elnikety;Alan Fekete;L. Bertossi;F. Geerts;Wenfei Fan;T. Westerveld;Cathal Gurrin;Jaana Kekäläinen;Paavo Arvola;Marko Junkkari;Kyriakos Mouratidis;Jeffrey Xu Yu;Yong Yao;John F. Gehrke;S. Babu;N. Palmer;C. Leung;Michael W. Carroll;Aniruddha S. Gokhale;Mourad Ouzzani;Brahim Medjahed;Ahmed K. Elmagarmid;S. Manegold;Graham Cormode;Serguei Mankovskii;Donghui Zhang;Theo Härder;Wei Gao;Cheng Niu;Qing Li;Yu Yang;Payam Refaeilzadeh;Lei Tang;Huan Liu;Torben Bach Pedersen;Konstantinos Morfonios;Y. Ioannidis;Michael H. Böhlen;R. Snodgrass;Lei Chen
  • 通讯作者:
    Lei Chen
Processing (Multiple) Spatio-temporal Range Queries in Multicore Settings
在多核设置中处理(多个)时空范围查询

Goce Trajcevski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Goce Trajcevski', 18)}}的其他基金

Collaborative Research: SWIFT: LARGE: Dynamics and Security Aware Predictive Spectrum Sharing with Active and Passive Users
协作研究:SWIFT:大型:与主动和被动用户进行动态和安全感知预测频谱共享
  • 批准号:
    2030249
  • 财政年份:
    2021
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Standard Grant
Conference on Advances in Geographic Information Systems 2019: Student Activities and U.S.-Based Students Support
2019 年地理信息系统进展会议:学生活动和美国学生支持
  • 批准号:
    1953829
  • 财政年份:
    2020
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Standard Grant
Student Support for 2017 International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL 2017)
2017 年地理信息系统进展国际会议 (ACM SIGSPATIAL 2017) 的学生支持
  • 批准号:
    1745399
  • 财政年份:
    2017
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Mapping and Querying Underground Infrastructure Systems
CPS:协同:协作研究:测绘和查询地下基础设施系统
  • 批准号:
    1823279
  • 财政年份:
    2017
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Multicore to Wide Area Analytics on Streaming Data
SPX:协作研究:流数据的多核到广域分析
  • 批准号:
    1725702
  • 财政年份:
    2017
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Mapping and Querying Underground Infrastructure Systems
CPS:协同:协作研究:测绘和查询地下基础设施系统
  • 批准号:
    1646107
  • 财政年份:
    2016
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Standard Grant
III: Small: Real-Time Detection of Structures from a Massive Graph Stream
III:小:从海量图流中实时检测结构
  • 批准号:
    1527541
  • 财政年份:
    2015
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Standard Grant
III: Large: Collaborative Research: Moving Objects Databases for Exploration of Virtual and Real Environments
III:大型:协作研究:用于探索虚拟和现实环境的移动对象数据库
  • 批准号:
    1213038
  • 财政年份:
    2012
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Standard Grant
NeTS: Large:Collaborative Research: Context-Driven Management of Heterogeneous Sensor Networks
NetS:大型:协作研究:异构传感器网络的上下文驱动管理
  • 批准号:
    0910952
  • 财政年份:
    2009
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于大塑性变形晶粒细化的背压触变反挤压锡青铜偏析行为调控研究
  • 批准号:
    52365047
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
面向大跨度结构的高强多孔骨料内养护UHPC徐变性能与模型研究
  • 批准号:
    52308231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度光学的大视场高分辨宽景深小型化显微成像
  • 批准号:
    62301293
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
基于气体多通腔多模非线性效应的大能量可调谐光源的研究
  • 批准号:
    12374318
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
二维氮化钼/磷化钼面内异质结构催化材料的设计合成及大电流密度析氢性能研究
  • 批准号:
    22379116
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Small: Taming Large-Scale Streaming Graphs in an Open World
协作研究:III:小型:在开放世界中驯服大规模流图
  • 批准号:
    2236578
  • 财政年份:
    2023
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Taming Large-Scale Streaming Graphs in an Open World
协作研究:III:小型:在开放世界中驯服大规模流图
  • 批准号:
    2236579
  • 财政年份:
    2023
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Cost-Efficient Sampling and Estimation from Large-Scale Networks
III:小型:协作研究:大规模网络的经济高效采样和估计
  • 批准号:
    2209921
  • 财政年份:
    2021
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Chameleon Phase III: A Large-Scale, Reconfigurable Experimental Environment for Cloud Research
合作研究:Chameleon 第三阶段:用于云研究的大规模、可重构实验环境
  • 批准号:
    2027170
  • 财政年份:
    2020
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了