NRI: Collaborative Research: ASPIRE: Automation Supporting Prolonged Independent Residence for the Elderly

NRI:合作研究:ASPIRE:自动化支持老年人长期独立居住

基本信息

项目摘要

Because of the graying of the population, there is a growing need for new assistive technologies to aid the elderly in their daily living. Based on figures provided by the U.S. Census Bureau, and due largely to the aging of the "baby boomer" generation, the population of U.S. adults who are 65 and older is projected to be twice as large in 2030 as it was in 2000, increasing from 35 million to 71.5 million and representing nearly 20 percent of the total U.S. population. This trend is placing enormous burdens on health care costs and causing disruptive changes to how individuals and families manage key late-in-life decisions, including residence. A recent (2015) report by the U.S. Department of Housing and Urban Development concluded that most seniors would prefer to age in place, and a 2010 survey found that 88% of respondents over 65 preferred to remain in their homes as long as possible. It is important to note that these residential preferences must typically be viewed in light of alternatives that are likely to be much more expensive and/or more socially taxing, such as older adults living instead in hospitals, assistive living facilities or with family members. While estimates of the costs associated with these trends vary greatly, it is almost certain that extending the portions of older adults' life spans in which they can live safely and independently through technological means could have enormous positive societal impact. In order to assist in successful aging in place, assistive robots have been developed in the past few decades. However, very few of them have become commercially available, and their use in domesticated environments remains highly limited. The major cause of the problem is that assistive robots typically take the form of full-size humanoid devices or something equally as cumbersome, expensive, and limited in movement and function. We propose a novel assistive robotic system that provides: (i) flexibility, allowing the designed system to be personalized based on users' needs without demanding any home modification upon installation; (ii) safety, ensuring that the system development process accounts for perceived safety by the user, and that the underlying theoretical framework guarantees collision avoidance; (iii) usability, consisting of a minimal and intuitive user interface to provide acceptable controls; (iv) reduced costs, with respect to currently available solutions on the market. The idea behind this research project is the development of a general framework that enables a team of unmanned ground vehicles and small multirotor unmanned aerial vehicles to safely cooperate with the elderly in a home environment. Equipped with appropriate human-machine interfaces, the co-robots will be able to accomplish a number of tasks as demanded by the users. The project addresses fundamental problems in the domain of multi-agent cooperative systems, comprised of humans and co-robots interacting in shared, highly constrained spaces. In order to assist humans, the co-robots have to be trusted by humans, implying that their behaviors be predictable and consistent with principles of human spatial perception, and their appearance must foster a high level of comfort and not create high cognitive demands on the user. Inspired by these challenges, this proposal focuses on the design and control of co-robots, which can adapt to unstructured and rapidly changing environments in a manner consistent with human perception and cognition, thus enhancing safety and robustness. The key focus areas include the design and acceptance of mobile ground and aerial robots that coexist in environments inhabited by humans and the development of a multi-objective control framework to allow intuitive user control over an ensemble of co-robots, which includes the design of both low-level controllers (LLC) and a supervisory, high-level controller (HLC). To demonstrate the benefits of the framework and to engage student groups from various, diverse populations, the following scenario will be considered as a test case: multirotor unmanned aerial vehicles and ground robots acting as domestic assistive devices for healthy older adults in a research laboratory. These co-robots will safely navigate the shared space and accomplish domestic tasks requested by humans while displaying behaviors and appearances that are perceived as safe and trusted. Humans will use an intuitively designed interface for both controlling and monitoring co-robots on a tablet or a smartphone device. A motion capture system and virtual reality Cube at the Beckman Institute will provide the context for data collection, iterative testing and validation.
由于人口老龄化,越来越需要新的辅助技术来帮助老年人的日常生活。根据美国人口普查局提供的数据,主要由于“婴儿潮”一代的老龄化,到2030年,美国65岁及以上的成年人口预计将是2000年的两倍,从3500万增加到7150万,占美国总人口的近20%。这一趋势给医疗保健成本带来了巨大负担,并对个人和家庭如何管理晚年的关键决定(包括居住)造成了破坏性的变化。美国住房和城市发展部最近(2015年)的一份报告得出结论,大多数老年人更愿意在原地养老,2010年的一项调查发现,88%的65岁以上的受访者希望尽可能长时间地呆在家里。值得注意的是,这些居住偏好通常必须考虑到可能更昂贵和/或更繁重的社会负担的替代方案,例如老年人住在医院、辅助生活设施或与家庭成员住在一起。虽然对与这些趋势有关的费用的估计差别很大,但几乎可以肯定的是,通过技术手段延长老年人能够安全和独立生活的寿命部分可能会产生巨大的积极社会影响。在过去的几十年里,为了帮助人们成功地进行老化,辅助机器人已经被开发出来。然而,它们中很少有商业上可用的,它们在家庭环境中的使用仍然非常有限。造成这个问题的主要原因是,辅助机器人通常采用全尺寸人形设备的形式,或者同样笨重、昂贵、运动和功能有限的东西。我们提出了一种新的辅助机器人系统,它提供:(i)灵活性,允许设计的系统根据用户的需求进行个性化设置,而无需在安装时进行任何家庭修改;(ii)安全性,确保系统开发过程考虑到用户感知的安全性,并确保潜在的理论框架保证避免碰撞;可用性,包括最小和直观的用户界面,以提供可接受的控制;(iv)相对于目前市场上可用的解决方案,降低了成本。这个研究项目背后的想法是开发一个通用框架,使无人驾驶地面车辆和小型多旋翼无人机团队能够在家庭环境中安全地与老年人合作。配备适当的人机界面,协作机器人将能够完成用户要求的许多任务。该项目解决了多智能体协作系统领域的基本问题,该系统由人类和协作机器人组成,在共享的、高度受限的空间中进行交互。为了帮助人类,协作机器人必须得到人类的信任,这意味着它们的行为是可预测的,符合人类空间感知的原则,它们的外观必须营造出高水平的舒适度,而不是对用户产生高的认知要求。受这些挑战的启发,本提案侧重于设计和控制协作机器人,使其能够以与人类感知和认知一致的方式适应非结构化和快速变化的环境,从而提高安全性和鲁棒性。重点领域包括在人类居住环境中共存的移动地面和空中机器人的设计和验收,以及多目标控制框架的开发,以允许用户对协作机器人的集合进行直观的控制,其中包括低级控制器(LLC)和监督高级控制器(HLC)的设计。为了展示该框架的好处,并吸引来自不同人群的学生团体,将考虑以下场景作为测试案例:在研究实验室中,多旋翼无人机和地面机器人作为健康老年人的家庭辅助设备。这些协作机器人将安全地在共享空间中导航,并完成人类要求的家务任务,同时展示被认为安全可信的行为和外观。人类将使用直观设计的界面来控制和监控平板电脑或智能手机上的协作机器人。贝克曼研究所的动作捕捉系统和虚拟现实立方体将为数据收集、迭代测试和验证提供环境。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Socially Aware Path Planning for a Flying Robot in Close Proximity of Humans
  • DOI:
    10.1145/3341570
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Hyung-Jin Yoon;Christopher Widdowson;Thiago Marinho;R. Wang;N. Hovakimyan
  • 通讯作者:
    Hyung-Jin Yoon;Christopher Widdowson;Thiago Marinho;R. Wang;N. Hovakimyan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Naira Hovakimyan其他文献

Three-dimensional coordinated path-following control for second-order multi-agent networks
二阶多智能体网络三维协调路径跟踪控制
  • DOI:
    10.1016/j.jfranklin.2015.01.020
  • 发表时间:
    2015-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zongyu Zuo;Venanzio Cichella;Ming Xu;Naira Hovakimyan
  • 通讯作者:
    Naira Hovakimyan
FlipDyn in Graphs: Resource Takeover Games in Graphs
图表中的 FlipDyn:图表中的资源接管游戏
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sandeep Banik;Shaunak D. Bopardikar;Naira Hovakimyan
  • 通讯作者:
    Naira Hovakimyan

Naira Hovakimyan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Naira Hovakimyan', 18)}}的其他基金

Collaborative Research: SLES: Guaranteed Tubes for Safe Learning across Autonomy Architectures
合作研究:SLES:跨自治架构安全学习的保证管
  • 批准号:
    2331878
  • 财政年份:
    2024
  • 资助金额:
    $ 129.59万
  • 项目类别:
    Standard Grant
Distributionally Robust Adaptive Control: Enabling Safe and Robust Reinforcement Learning
分布式鲁棒自适应控制:实现安全鲁棒的强化学习
  • 批准号:
    2135925
  • 财政年份:
    2022
  • 资助金额:
    $ 129.59万
  • 项目类别:
    Standard Grant
NSF-AoF: RI: Small: Safe Reinforcement Learning in Non-Stationary Environments With Fast Adaptation and Disturbance Prediction
NSF-AoF:RI:小型:具有快速适应和干扰预测功能的非平稳环境中的安全强化学习
  • 批准号:
    2133656
  • 财政年份:
    2021
  • 资助金额:
    $ 129.59万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Synergetic Drone Delivery Network in Metropolis
NRI:INT:COLLAB:大都市的协同无人机交付网络
  • 批准号:
    1830639
  • 财政年份:
    2018
  • 资助金额:
    $ 129.59万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Against Coordinated Cyber and Physical Attacks: Unified Theory and Technologies
CPS:媒介:协作研究:对抗协调的网络和物理攻击:统一理论和技术
  • 批准号:
    1739732
  • 财政年份:
    2017
  • 资助金额:
    $ 129.59万
  • 项目类别:
    Standard Grant
EAGER: Human centered robotic system design
EAGER:以人为本的机器人系统设计
  • 批准号:
    1548409
  • 财政年份:
    2015
  • 资助金额:
    $ 129.59万
  • 项目类别:
    Standard Grant

相似海外基金

NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
  • 批准号:
    2422640
  • 财政年份:
    2024
  • 资助金额:
    $ 129.59万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2327702
  • 财政年份:
    2023
  • 资助金额:
    $ 129.59万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
  • 批准号:
    2410255
  • 财政年份:
    2023
  • 资助金额:
    $ 129.59万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 129.59万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
  • 批准号:
    2132936
  • 财政年份:
    2022
  • 资助金额:
    $ 129.59万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2133019
  • 财政年份:
    2022
  • 资助金额:
    $ 129.59万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Remotely Operated Reconfigurable Walker Robots for Eldercare
合作研究:NRI:用于老年护理的远程操作可重构步行机器人
  • 批准号:
    2133075
  • 财政年份:
    2022
  • 资助金额:
    $ 129.59万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Smart Skins for Robotic Prosthetic Hand
合作研究:NRI:机器人假手智能皮肤
  • 批准号:
    2221479
  • 财政年份:
    2022
  • 资助金额:
    $ 129.59万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Integration of Autonomous UAS in Wildland Fire Management
合作研究:NRI:自主无人机在荒地火灾管理中的整合
  • 批准号:
    2132798
  • 财政年份:
    2022
  • 资助金额:
    $ 129.59万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robot-Assisted Feeding: Towards Efficient, Safe, and Personalized Caregiving Robots
NRI/合作研究:机器人辅助喂养:迈向高效、安全和个性化的护理机器人
  • 批准号:
    2132847
  • 财政年份:
    2022
  • 资助金额:
    $ 129.59万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了