NRI: INT: COLLAB: Synergetic Drone Delivery Network in Metropolis
NRI:INT:COLLAB:大都市的协同无人机交付网络
基本信息
- 批准号:1830639
- 负责人:
- 金额:$ 103.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Synergetic Drone Delivery Network in MetropolisThe rapid growth of e-commerce demands has put additional strain on dense urban communities resulting in increased traffic of delivery trucks while slowing down the pace of delivery operations. With recent quick-purchase innovations like the Amazon Dash button, e-commerce drastically modified the consumers behavior to buy smaller products separately and regularly, adding more load to delivery operations. Another growing trend is the offering of fast delivery services such as same-day and instant delivery. Instacart, Uber Eats and Amazon Now are examples of services that can fulfill a delivery order in just under 2 hours. These services rely heavily on the infrastructure of ride-sharing vehicles as Uber or Lyft drivers. This solution offers great flexibility to the consumer, but a single person can only deliver one purchase order to a customer at a time, and it is not scalable or cost-effective. There is an unquestionable need to redesign the current method of distribution packages in urban environments. This project envisions a framework that synergizes manipulatable distribution networks, comprising autonomous flying robots (drones) with existing transport networks, towards enhanced autonomy and economics in logistics. Imagine that a ride-sharing vehicle outfitted with a docking device for packages on its roof is traveling through a distribution center towards downtown. A drone can place a package on the vehicle's roof while it drives by the distribution center, and another drone can recover the package once the vehicle is driving through another distribution center in proximity to its destination. An operator that owns several base stations, at each of which it employs a network of drones to pick packages from the respective base station and drop it on a ground vehicle assigned to the package, is a required assumption by the framework. The ground vehicles can be public transport vehicles (PTVs), ride-sharing vehicles (RSVs), or operator owned vehicles (OOVs), which carry the package for most of the distance.The approach relies on three main thrusts: i) socially aware robotics, ii) safe and robust motion planning and execution, iii) cooperative network logistics. Motion planning for robots will be developed with account of peoples perception of safety, privacy, and comfort. Socially-aware motion planning methods to generate trajectories with guarantees of safety in the presence of obstacles and humans will be developed. Psychological experiments will be developed to study human's subtle behavior in response to the presence of multiple drones using virtual reality test environment. Local control algorithms will be developed for each drone to follow a feasible collision free path. Robust local communication protocols will be investigated so that flying robots can perform collaborative tasks over busy air/ground traffic conditions and unreliable communication networks. Another objective is to achieve robust and safe rendezvous with fast moving vehicles under communication, schedule, and other modeling uncertainties. Algorithms that generate (possibly multi-hop) routes for each package, consisting of vehicle route segments, with the objective of minimizing cumulative delivery time, will be developed. The series of vehicle segments on which each package travels, and the associated schedule, is required as input for drones. This in turn necessitates solving the underlying network design problem for the centralized entity, to determine locations of distribution centers (bases) and number of OOVs required for feasible and reliable delivery of all packages, while explicitly estimating uncertainty from traffic trends and overall frequency of travel of RSVs between various points in the network. Game-theoretic mechanisms that incentivize cooperation among multiple independent operators of PSVs and RSVs will be developed. Mechanisms have to be specifically designed to ensure truthful bidding, because the objectives of the operator, the RSVs and the PSVs are not naturally aligned.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大都市协同无人机配送网络电子商务需求的快速增长给人口密集的城市社区带来了额外的压力,导致配送卡车的交通量增加,同时减缓了配送业务的速度。随着亚马逊快捷键(Amazon Dash button)等最近的快速购买创新,电子商务极大地改变了消费者的行为,使他们能够单独、定期地购买较小的产品,这给配送业务增加了更多的负担。另一个日益增长的趋势是提供快速送货服务,如当日送达和即时送达。Instacart、Uber Eats和Amazon Now都是可以在两小时内完成配送订单的服务。这些服务严重依赖乘车共享车辆的基础设施,如优步或Lyft司机。这种解决方案为消费者提供了很大的灵活性,但是一个人一次只能向一个客户交付一个采购订单,并且它不具有可伸缩性或成本效益。毫无疑问,需要重新设计目前在城市环境中分发包的方法。该项目设想了一个框架,将可操纵的分销网络协同起来,包括自主飞行机器人(无人机)和现有的运输网络,以增强物流的自主性和经济性。想象一下,一辆在车顶安装了包裹对接装置的拼车正穿过一个配送中心驶向市中心。当车辆经过配送中心时,无人机可以将包裹放在车顶上,当车辆经过目的地附近的另一个配送中心时,另一架无人机可以收回包裹。一个运营商拥有多个基站,每个基站都有一个无人机网络,从各自的基站取包裹,并将其投放到分配给包裹的地面车辆上,这是该框架所要求的假设。地面车辆可以是公共交通车辆(ptv)、拼车车辆(rsv)或运营商拥有的车辆(oov),它们可以在大部分距离内携带包裹。该方法依赖于三个主要推动力:i)社会感知机器人,ii)安全和稳健的运动规划和执行,iii)合作网络物流。机器人的运动规划将随着人们对安全、隐私和舒适的感知而发展。将开发具有社会意识的运动规划方法,以生成在障碍物和人类存在的情况下保证安全的轨迹。将开发心理实验,利用虚拟现实测试环境研究人类对多架无人机存在的微妙行为。将为每架无人机开发局部控制算法,使其遵循可行的无碰撞路径。鲁棒的本地通信协议将被研究,以便飞行机器人可以在繁忙的空中/地面交通条件和不可靠的通信网络中执行协作任务。另一个目标是在通信、调度和其他建模不确定的情况下实现与快速移动车辆的鲁棒安全交会。将开发为每个包裹生成(可能是多跳)路线的算法,这些路线由车辆路线段组成,目标是最小化累积交付时间。每个包裹所在的一系列车辆分段,以及相关的时间表,都需要作为无人机的输入。这反过来又需要解决集中式实体的潜在网络设计问题,以确定配送中心(基地)的位置和可行且可靠地交付所有包裹所需的oov数量,同时明确估计流量趋势和rsv在网络中各点之间的总体旅行频率的不确定性。将开发激励psv和rsv的多个独立运营商之间合作的博弈论机制。由于运营商、rsv和psv的目标并非自然一致,因此必须专门设计机制以确保真实竞标。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning to Communicate: A Machine Learning Framework for Heterogeneous Multi-Agent Robotic Systems
- DOI:10.2514/6.2019-1456
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:Hyung-Jin Yoon;Huaiyu Chen;Kehan Long;Heling Zhang;Aditya Gahlawat;Donghwan Lee;N. Hovakimyan
- 通讯作者:Hyung-Jin Yoon;Huaiyu Chen;Kehan Long;Heling Zhang;Aditya Gahlawat;Donghwan Lee;N. Hovakimyan
Improving the Robustness of Reinforcement Learning Policies With ${\mathcal {L}_{1}}$ Adaptive Control
- DOI:10.1109/lra.2022.3169309
- 发表时间:2021-12
- 期刊:
- 影响因子:5.2
- 作者:Y. Cheng;Penghui Zhao;F. Wang;D. Block;N. Hovakimyan
- 通讯作者:Y. Cheng;Penghui Zhao;F. Wang;D. Block;N. Hovakimyan
Human navigation in curved spaces
弯曲空间中的人类导航
- DOI:10.1016/j.cognition.2021.104923
- 发表时间:2022
- 期刊:
- 影响因子:3.4
- 作者:Widdowson, Christopher;Wang, Ranxiao Frances
- 通讯作者:Wang, Ranxiao Frances
Simultaneous Facility Location and Path Optimization in Static and Dynamic Networks
- DOI:10.1109/tcns.2020.2995831
- 发表时间:2020-12
- 期刊:
- 影响因子:4.2
- 作者:Amber Srivastava;S. Salapaka
- 通讯作者:Amber Srivastava;S. Salapaka
Proximity Queries for Absolutely Continuous Parametric Curves
- DOI:10.15607/rss.2019.xv.042
- 发表时间:2019-02
- 期刊:
- 影响因子:0
- 作者:Arun Lakshmanan;Andrew Patterson;V. Cichella;N. Hovakimyan
- 通讯作者:Arun Lakshmanan;Andrew Patterson;V. Cichella;N. Hovakimyan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Naira Hovakimyan其他文献
Three-dimensional coordinated path-following control for second-order multi-agent networks
二阶多智能体网络三维协调路径跟踪控制
- DOI:
10.1016/j.jfranklin.2015.01.020 - 发表时间:
2015-09 - 期刊:
- 影响因子:0
- 作者:
Zongyu Zuo;Venanzio Cichella;Ming Xu;Naira Hovakimyan - 通讯作者:
Naira Hovakimyan
FlipDyn in Graphs: Resource Takeover Games in Graphs
图表中的 FlipDyn:图表中的资源接管游戏
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sandeep Banik;Shaunak D. Bopardikar;Naira Hovakimyan - 通讯作者:
Naira Hovakimyan
Naira Hovakimyan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Naira Hovakimyan', 18)}}的其他基金
Collaborative Research: SLES: Guaranteed Tubes for Safe Learning across Autonomy Architectures
合作研究:SLES:跨自治架构安全学习的保证管
- 批准号:
2331878 - 财政年份:2024
- 资助金额:
$ 103.77万 - 项目类别:
Standard Grant
Distributionally Robust Adaptive Control: Enabling Safe and Robust Reinforcement Learning
分布式鲁棒自适应控制:实现安全鲁棒的强化学习
- 批准号:
2135925 - 财政年份:2022
- 资助金额:
$ 103.77万 - 项目类别:
Standard Grant
NSF-AoF: RI: Small: Safe Reinforcement Learning in Non-Stationary Environments With Fast Adaptation and Disturbance Prediction
NSF-AoF:RI:小型:具有快速适应和干扰预测功能的非平稳环境中的安全强化学习
- 批准号:
2133656 - 财政年份:2021
- 资助金额:
$ 103.77万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Against Coordinated Cyber and Physical Attacks: Unified Theory and Technologies
CPS:媒介:协作研究:对抗协调的网络和物理攻击:统一理论和技术
- 批准号:
1739732 - 财政年份:2017
- 资助金额:
$ 103.77万 - 项目类别:
Standard Grant
NRI: Collaborative Research: ASPIRE: Automation Supporting Prolonged Independent Residence for the Elderly
NRI:合作研究:ASPIRE:自动化支持老年人长期独立居住
- 批准号:
1528036 - 财政年份:2015
- 资助金额:
$ 103.77万 - 项目类别:
Standard Grant
EAGER: Human centered robotic system design
EAGER:以人为本的机器人系统设计
- 批准号:
1548409 - 财政年份:2015
- 资助金额:
$ 103.77万 - 项目类别:
Standard Grant
相似国自然基金
内源性逆转录病毒MER65-int调控人类胎
盘发育与子宫内膜重塑的功能研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
- 批准号:32370939
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
- 批准号:LQ22H160033
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
- 批准号:81903680
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
- 批准号:31800624
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
- 批准号:81371698
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
- 批准号:81100439
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NRI: INT: COLLAB: Muscle Ultrasound Sensing for Intuitive Control of Robotic Leg Prostheses
NRI:INT:COLLAB:用于机器人假肢直观控制的肌肉超声传感
- 批准号:
2054343 - 财政年份:2020
- 资助金额:
$ 103.77万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Distributed co-Robots for Strawberry Harvesting
NRI:INT:COLLAB:用于草莓采摘的分布式协作机器人
- 批准号:
1924622 - 财政年份:2019
- 资助金额:
$ 103.77万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Raining Drones: Mid-Air Release & Recovery of Atmospheric Sensing Systems
NRI:INT:协作:无人机下雨:空中发布
- 批准号:
1925052 - 财政年份:2019
- 资助金额:
$ 103.77万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Leveraging Environmental Monitoring UAS in Rainforests
NRI:INT:协作:利用雨林中的环境监测无人机
- 批准号:
1925262 - 财政年份:2019
- 资助金额:
$ 103.77万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Program Verification and Synthesis for Collaborative Robots
NRI:INT:COLLAB:协作机器人的程序验证和综合
- 批准号:
1925043 - 财政年份:2019
- 资助金额:
$ 103.77万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Muscle Ultrasound Sensing for Intuitive Control of Robotic Leg Prostheses
NRI:INT:COLLAB:用于机器人假肢直观控制的肌肉超声传感
- 批准号:
1925371 - 财政年份:2019
- 资助金额:
$ 103.77万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Muscle Ultrasound Sensing for Intuitive Control of Robotic Leg Prostheses
NRI:INT:COLLAB:用于机器人假肢直观控制的肌肉超声传感
- 批准号:
1925343 - 财政年份:2019
- 资助金额:
$ 103.77万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Leveraging Environmental Monitoring UAS in Rainforests
NRI:INT:协作:利用雨林中的环境监测无人机
- 批准号:
1925368 - 财政年份:2019
- 资助金额:
$ 103.77万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Mesh Of Robots on a Pneumatic Highway (MORPH): An Untethered, Human-Safe, Shape-Morphing Robotic Platform
NRI:INT:COLLAB:气动高速公路上的机器人网格 (MORPH):一个不受束缚、对人类安全、可变形的机器人平台
- 批准号:
1925373 - 财政年份:2019
- 资助金额:
$ 103.77万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Anthropomorphic Robotic Ankle Prosthesis with Programmable Materials
NRI:INT:COLLAB:采用可编程材料的拟人机器人踝关节假体
- 批准号:
2025797 - 财政年份:2019
- 资助金额:
$ 103.77万 - 项目类别:
Standard Grant