MRI: Acquisition of a Heterogeneous Networked Instrument for Aquatic Exploration and Intelligent Sampling

MRI:获取用于水生勘探和智能采样的异构网络仪器

基本信息

  • 批准号:
    1531322
  • 负责人:
  • 金额:
    $ 39.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to address water-related issues in the Four Corners Region through an automated, robotic monitoring system composed of multiple cooperating and communicating autonomous robots that serve as an integrated monitoring system. Aquatic observation and monitoring is key to understanding and ultimately predicting long-term effects of urbanization, water storage and climate change. Effective observation and monitoring requires simultaneous measurement of multiple water properties, which must be made rapidly to capture variations in both space and time. Autonomous aquatic vehicles provide a cost-effective, non-intrusive, and a repeatable way of observing aquatic ecosystems up close, and at an unprecedented resolution. With these modern robots having such amazing capabilities, the main challenge in this project is to determine where and when to deploy the robots to gain the most understanding of our water resources. Through this research effort, the research will not only learn more about water resources in the Four Corners Region, but it will additionally develop algorithms and intelligent sampling strategies that can be utilized for studying any aquatic environment around the world, e.g., oceans, lakes, rivers, etc. Aquatic wireless sensor networks are instrumental to a better scientific understanding of aquatic ecosystems, environmental monitoring, surveillance for defense applications, homeland security, and aquaculture, providing a wealth of applications to the community beyond those directly studied in this proposal.Effective observation and quantification of spatiotemporally dynamic processes occurring in aquatic environments, e.g., the ocean, requires simultaneous measurement of diverse water properties, which must be made rapidly to capture the both the spatial and temporal variability of multiple simultaneous interactions. This cannot be done by traditional oceanographic methods involving infrequent and sparse measurements from ships, buoys and drifters. The research must employ an adaptive-sampling, heterogeneous team of robotic assets that can perform in situ feature recognition and event response with accurate localization to plug a substantial gap in understanding of a range of processes: physical (e.g., tidal mixing and seasonal overturn), chemical (e.g., nutrient upwelling and hypoxia), and biological (e.g., harmful algal blooms). Successfully orchestrating a multi-vehicle, deployment additionally requires a robust, rapid and cost-effective communication network. Only when all these components, which form an aquatic robotic, sensing system, are in synchronous operation can scientists begin to improve our overall understanding of the complex aquatic environment. This project will acquire and implement a heterogeneous networked instrument composed of three complementary aquatic robots; two autonomous surface vehicles and one autonomous underwater vehicle. These networked robots will enhance a program of research in marine robotics, networking, and deliberative planning to address fundamental questions in marine biology, oceanography, and aquatic biogeochemistry by addressing critical water quality issues within the Four Corners Region. The proposed instrument acquisition will provide a cost-effective test bed for the validation of planning and sampling strategies for large-scale, heterogeneous robotic networks. Specifically, the proposed system will enable researchers to efficiently and cost-effectively develop, test and validate coordinated, multi-vehicle control algorithms and strategies for intelligent aquatic sampling.
该项目的目标是通过一个自动化的机器人监测系统来解决四角地区与水有关的问题,该系统由多个协作和通信的自主机器人组成,作为一个综合监测系统。水生观察和监测是了解和最终预测城市化、水储存和气候变化长期影响的关键。有效的观察和监测需要同时测量多种水的性质,必须迅速进行,以捕捉空间和时间上的变化。自主水上交通工具提供了一种具有成本效益、非侵入性和可重复的近距离观察水生生态系统的方法,并且具有前所未有的分辨率。由于这些现代机器人拥有如此惊人的能力,这个项目的主要挑战是确定何时何地部署机器人,以获得对水资源的最大了解。通过这项研究,不仅可以进一步了解四角地区的水资源,还可以开发算法和智能采样策略,用于研究世界上任何水生环境,如海洋、湖泊、河流等。水生无线传感器网络有助于更好地科学理解水生生态系统、环境监测、国防应用监测、国土安全和水产养殖,为社区提供了丰富的应用,超出了本提案直接研究的范围。有效地观测和量化发生在水环境(如海洋)中的时空动态过程,需要同时测量不同的水性质,这些性质必须快速进行,以捕捉多个同时相互作用的空间和时间变异性。传统的海洋学方法不可能做到这一点,这些方法涉及从船舶、浮标和漂流船进行的不频繁和稀疏的测量。这项研究必须采用一个适应性采样、异构的机器人资产团队,能够进行原位特征识别和事件响应,并精确定位,以填补对一系列过程理解的实质性空白:物理(例如潮汐混合和季节性翻转)、化学(例如营养物质上涌和缺氧)和生物(例如有害藻华)。成功地协调多车辆部署,还需要一个强大、快速和经济的通信网络。只有当构成一个水生机器人传感系统的所有这些组成部分同步运行时,科学家们才能开始提高我们对复杂水生环境的整体认识。本项目将获取并实现由三个互补的水生机器人组成的异构网络化仪器;两个自主水面航行器和一个自主水下航行器。这些网络机器人将通过解决四角地区的关键水质问题,加强海洋机器人、网络和审议规划方面的研究项目,以解决海洋生物学、海洋学和水生生物地球化学方面的基本问题。提出的仪器采集将为大规模异构机器人网络的规划和采样策略的验证提供一个具有成本效益的测试平台。具体来说,该系统将使研究人员能够高效、经济地开发、测试和验证用于智能水生采样的协调、多车辆控制算法和策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Smith其他文献

Unconscious emotion: A cognitive neuroscientific perspective
无意识情绪:认知神经科学的视角
Subjective Experience and Its Neural Basis
  • DOI:
    10.1007/978-3-030-47645-8_9
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryan Smith
  • 通讯作者:
    Ryan Smith
A Social Inference Model of Idealization and Devaluation
理想化与贬值的社会推理模型
  • DOI:
    10.1037/rev0000430
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Giles W. Story;Ryan Smith;M. Moutoussis;Isabel M. Berwian;T. Nolte;E. Bilek;Jenifer Z. Siegel;R. Dolan
  • 通讯作者:
    R. Dolan
Analysis and optimization of structure-based virtual screening protocols. (3). New methods and old problems in scoring function design.
基于结构的虚拟筛选方案的分析和优化。
Modeling 65 Years of Land Subsidence in California’s San Joaquin Valley
对加利福尼亚州圣华金河谷 65 年的地面沉降进行建模
  • DOI:
    10.21203/rs.3.rs-609832/v1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Lees;R. Knight;Ryan Smith
  • 通讯作者:
    Ryan Smith

Ryan Smith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan Smith', 18)}}的其他基金

Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
  • 批准号:
    2242365
  • 财政年份:
    2024
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Standard Grant

相似海外基金

MRI: Acquisition of a Heterogeneous High-Performance Computing Cluster Driven by Computational and Data-Intensive Multidisciplinary Research
MRI:获取由计算和数据密集型多学科研究驱动的异构高性能计算集群
  • 批准号:
    2216311
  • 财政年份:
    2022
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Micro-Transfer Printer for Heterogeneous Integration of Electronic/Photonic Microsystems
MRI:购买用于电子/光子微系统异构集成的微型转移打印机
  • 批准号:
    2117812
  • 财政年份:
    2021
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Heterogeneous Multi-GPU Cluster to Support Exploration at Scale
MRI:获取异构多 GPU 集群以支持大规模探索
  • 批准号:
    1920020
  • 财政年份:
    2020
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Heterogeneous GPU Cluster to Facilitate Deep Learning Research at UMBC
MRI:收购异构 GPU 集群以促进 UMBC 的深度学习研究
  • 批准号:
    1920079
  • 财政年份:
    2019
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Heterogeneous Computer System for Machine Learning
MRI:获取用于机器学习的异构计算机系统
  • 批准号:
    1919752
  • 财政年份:
    2019
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Heterogeneous Computing Platform for Biometrics Research
MRI:收购用于生物识别研究的异构计算平台
  • 批准号:
    1626360
  • 财政年份:
    2016
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Standard Grant
MRI Consortium: Acquisition of a Heterogeneous, Shared, Computing Instrument to Enable Science and Computing Research by the Mass. Green High Performance Computing Consortium
MRI 联盟:收购异构、共享计算仪器,以支持马萨诸塞州的科学和计算研究。绿色高性能计算联盟
  • 批准号:
    1538918
  • 财政年份:
    2014
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Standard Grant
MRI: Acquisition of SuperMIC -- A Heterogeneous Computing Environment to Enable Transformation of Computational Research and Education in the State of Louisiana
MRI:收购 SuperMIC——一种异构计算环境,以实现路易斯安那州计算研究和教育的转型
  • 批准号:
    1338051
  • 财政年份:
    2013
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Standard Grant
MRI Consortium: Acquisition of a Heterogeneous, Shared, Computing Instrument to Enable Science and Computing Research by the Mass. Green High Performance Computing Consortium
MRI 联盟:收购异构、共享计算仪器,以支持马萨诸塞州的科学和计算研究。绿色高性能计算联盟
  • 批准号:
    1229059
  • 财政年份:
    2012
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a High-Performance Instrument for Heterogeneous and Biologically Inspired Architectures Research at CUA
MRI:CUA 采购用于异质和生物启发架构研究的高性能仪器
  • 批准号:
    1126120
  • 财政年份:
    2011
  • 资助金额:
    $ 39.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了