MRI: Development of An Airborne Infrared Spectrometer (AIR-Spec) for Coronal Emission Line Observation

MRI:开发用于日冕发射线观测的机载红外光谱仪 (AIR-Spec)

基本信息

项目摘要

Total solar eclipses offer unique opportunities for scientific explorations and discoveries, and also for people of all walks of life and ages to witness one of Nature's most fascinating displays of beauty. On August 21, 2017, a rare total solar eclipse event will occur that will traverse the continental United States, starting in Oregon and ending in South Carolina. The previous such occasion was on 29 July 1878. The purpose of this major research instrumentation project is to design, build, test, and fly a highly advanced imaging spectrometer to make measurements during this eclipse, for the first time, of the solar corona in the infrared spectrum. This opens a new wavelength window for observation of the solar corona that has exiting potential for advancing our understanding of this hard-to-observe region. The Airborne Infra-Red Spectrometer (AIR-Spec) instrument will include a novel image stabilization system to allow it to be deployed on NSF's Gulfstream V aircraft operated by the National Center for Atmospheric Research (NCAR). Flying at an altitude above 49,000 feet makes it possible to get measurements without disturbances from local weather and avoiding most of the absorbing water vapor in the atmosphere that poses a challenge for observations at the ground. The completion of this program will see the delivery to NCAR of a stable commissioned instrument that is certified and available for other scientist to fly on the GV for future research missions. The GV can travel almost anywhere and re-flights at other future eclipses are an obvious possibility to pursue. The July 2, 2019, South Pacific eclipse will be the first chance for another eclipse flight. In addition, the stabilized high resolution observing capability can be used by other experiments for solar and atmospheric observations throughout the world.The project will be carried out in collaboration between the scientists and engineers at the Smithsonian Astrophysical Observatory (SAO) and NCAR's High Altitude Observatory (HAO), each contributing essential expertise and experience to ensure its successful completion. The project will directly contribute to training the next generation of instrumentation scientists while fostering diversity. A Harvard graduate student from the School of Engineering and Applied Sciences will be involved in all aspects of the project, including design, fabrication and test of the AIR-Spec instrument, as well as analysis of the observations, if scientific data are acquired during the eclipse. This will form the basis for her thesis and she will enjoy the benefits of mentoring from scientists and engineers at both SAO and HAO. In addition, the 2017 US solar eclipse is expected to generate a huge amount of interest amongst the general public and the project team will work closely with partners at the National Air and Space Museum, the Boston Museum of Science and the Eclipse Mega-Movie group at HAO on pre and post eclipse outreach events. The AIR-Spec instrumentation includes an image stabilization system, a feed telescope, a grating spectrometer and a slit-jaw imager. It will measure emission line intensity, FWHM, and Doppler shift a set of magnetically sensitive coronal emission lines at a range of coronal positions during the August 21, 2017 "Great American Eclipse". Although high resolution, high sensitivity coronal imaging spectroscopy has never been performed between 1.4 and 4um, this spectral region has great potential for coronal plasma diagnostics, for coronal hole spectroscopy, and as a path finder for observations of coronal magnetic fields. Infrared coronal emission lines are well suited for measuring magnetic field properties using the Zeeman and Hanle effects, but such measurements require high precision spectro-polarimetric instruments that cannot be designed until the candidate emission lines have been characterized. The 2017 eclipse provides a unique opportunity to survey these lines, and AIR-Spec observations can help provide guidance for future ground-based Infrared observations. The AIR-Spec commissioning flight during the 2017 eclipse will target three science goals: (1) Search for high frequency waves in multiple lines at multiple locations in the corona. These waves are candidates for heating and acceleration of the solar wind. (2) Identify large-scale flows in the corona, particularly in polar coronal holes. Three of the lines to be observed are expected to be strong in coronal hole plasmas because they are excited in part by scattered photospheric light. Line profile analysis will probe the origins of the fast and slow solar wind. (3) Complement ground based eclipse observations to provide detailed plasma diagnostics throughout the corona. AIR-Spec will measure IR emission of ions also observed in the visible, giving insight into plasma heating and acceleration at radial distances inaccessible with existing or planned spectrometers. On the technology side, the AIR-Spec stabilization system removes a significant obstacle to airborne observations. The system relies on inertial measurements to stabilize the platform to 1.4 arcsec RMS for the planned 0.3 sec exposure (1.7arcsec RMS per sec), allowing it to be used for a wide range of solar and atmospheric imaging experiments. Finally, for the future there is the possibility for AIR-Spec to be modified to add linear polarization optics for direct measurements of coronal magnetic field direction.
日全食为科学探索和发现提供了独特的机会,也为各行各业和年龄的人提供了见证大自然最迷人的美丽展示之一的机会。2017年8月21日,将发生一次罕见的日全食事件,它将横穿美国大陆,从俄勒冈州开始,到南卡罗来纳州结束。上一次是在1878年7月29日。 这一重大研究仪器项目的目的是设计、建造、测试和飞行一个非常先进的成像光谱仪,以便在这次日食期间首次在红外光谱中测量日冕。 这为观测日冕打开了一个新的波长窗口,它有可能促进我们对这个难以观测区域的理解。 机载红外光谱仪(AIR-Spec)将包括一个新的图像稳定系统,使其能够部署在由国家大气研究中心(NCAR)运营的NSF湾流V飞机上。 在49,000英尺以上的高度飞行可以在不受当地天气干扰的情况下进行测量,并避免大气中大部分吸收的水蒸气,这对地面观测构成了挑战。 该计划的完成将向NCAR交付一个稳定的委托仪器,该仪器经过认证,可供其他科学家在GV上飞行,用于未来的研究任务。 GV几乎可以旅行到任何地方,在未来的其他日食中重新飞行是一个明显的可能性。2019年7月2日,南太平洋日食将是另一次日食飞行的第一次机会。 此外,稳定的高分辨率观测能力可用于世界各地的太阳和大气观测的其他实验,该项目将由史密森天体物理观测台和NCAR高海拔观测台的科学家和工程师合作实施,每个人都提供必要的专门知识和经验,以确保其成功完成。 该项目将直接有助于培养下一代仪器科学家,同时促进多样性。 一名来自工程和应用科学学院的哈佛研究生将参与该项目的各个方面,包括AIR-Spec仪器的设计、制造和测试,以及如果在日食期间获得科学数据,则对观测结果进行分析。这将构成她的论文的基础,她将享受来自SAO和HAO的科学家和工程师的指导。 此外,2017年美国日食预计将在公众中产生巨大的兴趣,项目团队将与国家航空航天博物馆,波士顿科学博物馆和HAO的Eclipse Mega-Movie小组的合作伙伴密切合作,在日食前后开展宣传活动。 AIR-Spec仪器包括一个图像稳定系统、一个馈源望远镜、一个光栅光谱仪和一个狭缝式成像仪。 它将在2017年8月21日“大美国日食”期间测量发射线强度,FWHM和多普勒频移,一组磁敏感的日冕发射线在一系列日冕位置。虽然高分辨率,高灵敏度的日冕成像光谱学从来没有在1.4和4微米之间进行,这个光谱区域有很大的潜力,日冕等离子体诊断,日冕洞光谱学,并作为一个路径探测器的日冕磁场观测。红外日冕发射线非常适合使用塞曼和汉勒效应测量磁场特性,但这种测量需要高精度的光谱偏振仪器,直到候选发射线被表征才能设计出来。2017年的日食为调查这些线提供了一个独特的机会,而AIR-Spec观测可以帮助为未来的地基红外观测提供指导。 2017年日食期间的AIR-Spec调试飞行将针对三个科学目标:(1)在日冕的多个位置搜索多条线中的高频波。这些波是加热和加速太阳风的候选者。(2)识别日冕中的大规模流动,特别是在极冕洞中。其中三条被观测到的谱线在冕洞等离子体中预计会很强,因为它们部分是由散射的光球光激发的。谱线剖面分析将探测快速和慢速太阳风的起源。(3)补充基于地面的日食观测,以提供整个日冕的详细等离子体诊断。AIR-Spec将测量可见光中观察到的离子的红外发射,从而深入了解现有或计划中的光谱仪无法到达的径向距离上的等离子体加热和加速。 在技术方面,AIR-Spec稳定系统消除了机载观测的重大障碍。该系统依靠惯性测量将平台稳定在1.4弧秒RMS,以实现计划的0.3秒曝光(每秒1.7弧秒RMS),使其能够用于广泛的太阳和大气成像实验。 最后,未来有可能对AIR-Spec进行修改,以增加线性偏振光学器件,用于直接测量日冕磁场方向。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward DeLuca其他文献

Solar Soft X-ray Irradiance Variability, I: Segmentation of Hinode/XRT Full-Disk Images and Comparison with GOES (1 – 8 Å) X-Ray Flux
  • DOI:
    10.1007/s11207-021-01785-6
  • 发表时间:
    2021-04-20
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    H. N. Adithya;Rangaiah Kariyappa;Imada Shinsuke;Kusano Kanya;Joe Zender;Luc Damé;Giono Gabriel;Edward DeLuca;Mark Weber
  • 通讯作者:
    Mark Weber
Solar Soft X-ray Irradiance Variability III: Magnetic Field Variations of Coronal X-ray Features
太阳软X射线辐照度变异性III:日冕X射线特征的磁场变化
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    R. Kariyappa;H. N. Adithya;Satoshi Masuda;K. Kusano;Shinsuke Imada;Joe Zender;Luc Damé;Edward DeLuca;Mark Weber;Takuma Matsumoto
  • 通讯作者:
    Takuma Matsumoto

Edward DeLuca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward DeLuca', 18)}}的其他基金

Airborne InfraRed Spectrograph (AIR-Spec) 2019 Eclipse Flight
机载红外光谱仪 (AIR-Spec) 2019 Eclipse 飞行
  • 批准号:
    1822314
  • 财政年份:
    2018
  • 资助金额:
    $ 120.06万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Development of the first global standard for airborne microplastic monitoring.
制定第一个空气微塑料监测全球标准。
  • 批准号:
    NE/X010201/1
  • 财政年份:
    2022
  • 资助金额:
    $ 120.06万
  • 项目类别:
    Research Grant
Development of fast ozone detectors for measurement of ozone fluxes from ship and airborne platforms
开发用于测量船舶和机载平台臭氧通量的快速臭氧探测器
  • 批准号:
    2737638
  • 财政年份:
    2022
  • 资助金额:
    $ 120.06万
  • 项目类别:
    Studentship
Development of a drone-based airborne electromagnetic method for the discovery of subsurface areas at risk of phreatic eruptions
开发基于无人机的机载电磁方法,用于发现有潜水喷发风险的地下区域
  • 批准号:
    22K14104
  • 财政年份:
    2022
  • 资助金额:
    $ 120.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of an Airborne Pathogen Capture and Detection System
空气传播病原体捕获和检测系统的开发
  • 批准号:
    2127756
  • 财政年份:
    2022
  • 资助金额:
    $ 120.06万
  • 项目类别:
    Standard Grant
MRI: Development of an Airborne Coronal Emission Surveyor (ACES)
MRI:机载日冕发射测量仪 (ACES) 的开发
  • 批准号:
    2117582
  • 财政年份:
    2021
  • 资助金额:
    $ 120.06万
  • 项目类别:
    Standard Grant
Development of evaluation method of airborne nano- and micro-plastic particles
空气中纳米和微塑料颗粒评价方法的开发
  • 批准号:
    21H03618
  • 财政年份:
    2021
  • 资助金额:
    $ 120.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SBIR Phase I: Development of a Low-cost, Scalable Sampler for Airborne COVID-19 Virus Detection
SBIR 第一阶段:开发用于空气传播 COVID-19 病毒检测的低成本、可扩展采样器
  • 批准号:
    2027696
  • 财政年份:
    2020
  • 资助金额:
    $ 120.06万
  • 项目类别:
    Standard Grant
Development of high-precision classification technology for standing trees by integrating next-generation airborne and ground based laser scanning
集成新一代机载和地面激光扫描,开发立木高精度分类技术
  • 批准号:
    20H03025
  • 财政年份:
    2020
  • 资助金额:
    $ 120.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
MRI: Development of an Airborne Stabilized Platform for InfraRed Experiments (ASPIRE)
MRI:开发用于红外实验的机载稳定平台 (ASPIRE)
  • 批准号:
    1919809
  • 财政年份:
    2019
  • 资助金额:
    $ 120.06万
  • 项目类别:
    Standard Grant
Development of an observation system for typhoons using airborne phased-array weather radar
机载相控阵气象雷达台风观测系统的研制
  • 批准号:
    19K03973
  • 财政年份:
    2019
  • 资助金额:
    $ 120.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了