MRI: Acquisition of High Performance Scientific Computing Cluster at Trinity University
MRI:收购三一大学高性能科学计算集群
基本信息
- 批准号:1531594
- 负责人:
- 金额:$ 62.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This instrument supports large-scale, high-performance computing (HPC) at Trinity University, which enables a broad range of scientific research efforts spanning mathematics, computer science, chemistry, biology, and physics. Many ongoing projects at Trinity relate to questions of 'big data' analysis, including such diverse areas as weak interactions in host-guest chemistry, multi-scale simulations of protein interactions, models of fluid dynamics related to cellular motility in membranes, analysis of high-throughput genomic sequencing data, multi-agent modeling of security systems, and simulations of particle collisions and gravity within the rings of Saturn. Each of these research areas requires considerable computational power to analyze extremely large datasets, whether generated through traditional laboratory experiments or through robust computational simulations. The HPC cluster provides a shared computational resource to all researchers at Trinity, and includes both traditional central processing units (CPUs) and newer general-purpose graphics processor unit (GPU) systems optimized for large quantities of floating-point numeric operations. The cluster operates on the Linux operating system, with a hybrid queuing/priority system so that computational jobs submitted by any researcher are quickly and efficiently executed. This resource enables Trinity University, an undergraduate institution, to more effectively train and educate students on tangible aspects of large-scale computational projects and research endeavors, such as the value of test-driven development, efficient algorithm design, memory management, and data visualization, while still tackling the challenges of open research questions on a modern scale.
该仪器支持Trinity University的大规模高性能计算(HPC),从而实现了涵盖数学、计算机科学、化学、生物学和物理学的广泛科学研究工作。 Trinity正在进行的许多项目涉及“大数据”分析的问题,包括不同的领域,如主客体化学中的弱相互作用,蛋白质相互作用的多尺度模拟,与细胞膜运动相关的流体动力学模型,高通量基因组测序数据的分析,安全系统的多代理建模,以及土星环内粒子碰撞和重力的模拟。这些研究领域中的每一个都需要相当大的计算能力来分析非常大的数据集,无论是通过传统的实验室实验还是通过强大的计算模拟生成的。HPC集群为Trinity的所有研究人员提供共享计算资源,包括传统的中央处理器(CPU)和针对大量浮点数字运算进行优化的新型通用图形处理器(GPU)系统。 该集群在Linux操作系统上运行,具有混合排队/优先级系统,以便快速有效地执行任何研究人员提交的计算作业。 这种资源使Trinity University,一个本科院校,更有效地培训和教育学生的大规模计算项目和研究工作的有形方面,如测试驱动的开发,高效的算法设计,内存管理和数据可视化的价值,同时仍然在现代规模上解决开放的研究问题的挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Hibbs其他文献
A Python Multiprocessing Approach for Fast Geostatistical Simulations of Subglacial Topography
用于冰下地形快速地统计模拟的 Python 多处理方法
- DOI:
10.1109/mcse.2023.3317773 - 发表时间:
2023 - 期刊:
- 影响因子:2.1
- 作者:
Nathan Schoedl;E. Mackie;Michael Field;Eric A. Stubbs;Allan Zhang;Matthew Hibbs;M. Gravey - 通讯作者:
M. Gravey
Applying machine learning to investigate lipid domain formation behaviors in the presence of amyloidogenic proteins
- DOI:
10.1016/j.bpj.2022.11.1612 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Thuong L.H. Pham;Amber Lewis;Ngoc Nguyen;Matthew Hibbs;Kwan Hon K. Cheng - 通讯作者:
Kwan Hon K. Cheng
Matthew Hibbs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
MRI: Track 1 Acquisition of a High-Performance Computing System at New Mexico Tech
MRI:新墨西哥理工学院高性能计算系统的第一轨道采购
- 批准号:
2320162 - 财政年份:2024
- 资助金额:
$ 62.37万 - 项目类别:
Standard Grant
Equipment: MRI: Track 2 Acquisition of a Novel Performance-Driven 3D Imaging System for Extremely Noisy Objects (NPIX)
设备: MRI:第 2 道采购新型性能驱动的 3D 成像系统,用于极噪物体 (NPIX)
- 批准号:
2319708 - 财政年份:2023
- 资助金额:
$ 62.37万 - 项目类别:
Continuing Grant
Equipment: MRI: Track 2 Acquisition of a High-Performance Computing Cluster for Boosting Artificial Intelligence Enabled Science, Engineering, and Education in South Carolina
设备: MRI:第二轨道收购高性能计算集群,以促进南卡罗来纳州人工智能支持的科学、工程和教育
- 批准号:
2320292 - 财政年份:2023
- 资助金额:
$ 62.37万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of a High-Performance X-Ray Photoelectron Spectrometer for Research and Training
设备: MRI:轨道 1 采购高性能 X 射线光电子能谱仪用于研究和培训
- 批准号:
2320116 - 财政年份:2023
- 资助金额:
$ 62.37万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of Current Hardware to Enhance Computational Research on the ELSA High Performance Computing Cluster at The College of New Jersey
设备: MRI:第一轨道采购当前硬件,以增强新泽西学院 ELSA 高性能计算集群的计算研究
- 批准号:
2320244 - 财政年份:2023
- 资助金额:
$ 62.37万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of a high-performance computer cluster for computational biology
设备: MRI:轨道 1 获取用于计算生物学的高性能计算机集群
- 批准号:
2320846 - 财政年份:2023
- 资助金额:
$ 62.37万 - 项目类别:
Standard Grant
MRI: Acquisition of a high-performance computing resource to enhance research and undergraduate education at the College of Staten Island
MRI:收购高性能计算资源以加强史坦顿岛学院的研究和本科教育
- 批准号:
2215760 - 财政年份:2022
- 资助金额:
$ 62.37万 - 项目类别:
Standard Grant
MRI: Acquisition of a High-Performance Computational System for OAK Region to Enable Computing and Data Driven Discovery
MRI:为 OAK 地区采购高性能计算系统,以实现计算和数据驱动的发现
- 批准号:
2216084 - 财政年份:2022
- 资助金额:
$ 62.37万 - 项目类别:
Standard Grant
MRI: Acquisition of High-Performance Computing Cluster for Research in Engineering, Science, and Technology
MRI:收购高性能计算集群用于工程、科学和技术研究
- 批准号:
2216335 - 财政年份:2022
- 资助金额:
$ 62.37万 - 项目类别:
Standard Grant
MRI: Acquisition of a GPU-based High Performance Computing Instrumentation for Smart City Research at Cleveland State University
MRI:克利夫兰州立大学为智能城市研究采购基于 GPU 的高性能计算仪器
- 批准号:
2215388 - 财政年份:2022
- 资助金额:
$ 62.37万 - 项目类别:
Standard Grant