CAREER: Electroactive Graphene-Polymer System with Extreme Actuation and Tunable Properties
职业:具有极端驱动和可调特性的电活性石墨烯聚合物系统
基本信息
- 批准号:1532136
- 负责人:
- 金额:$ 35.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this Faculty Early Career Development (CAREER) Program award is to understand and exploit the large deformation, instabilities, and microstructure evolution of electroactive graphene-polymer systems (eGPS) to achieve extremely high actuation stress and strain, along with other novel properties such as superhydrophobicity and tunable wettability. Subject to voltages, existing polymers can reach relatively high levels of either stress or strain, but not both. This imbalance in actuation stress and strain greatly limits the energy density of these polymers and hampers their promising applications. The proposed eGPS innovatively laminates films of polymer blends and large-area graphene with hierarchical patterns. The polymer blends integrate merits of different polymers, while the patterned graphene acts as lightweight transparent electrodes with novel tunable properties. The proposed study will take an integrated experimental and theoretical approach. A multi-field microscopic system invented by the PI will be used to explore electromechanical properties and instabilities of eGPS, and a multi-scale theoretical model will be developed to quantitatively guide the design of new materials and structures.Electroactive graphene-polymer systems represent a new type of soft active material with multiple performance parameters that are superior to natural muscles. These so-called artificial muscles are enabling diverse technologies ranging from robotics and drug delivery to energy harvesting and storage. In particular, artificial muscles promise to greatly improve the quality of life for millions of disabled people by providing affordable devices such as lightweight anthropomorphic prostheses and full-page Braille displays. The broad impact of new artificial muscles is potentially analogous to the impact of piezoelectric ceramics on the global society in the twentieth century. The integrated educational objectives of the project include integration of soft-active-material design into the engineering curriculum, a Research Experience for Teachers program on artificial muscles, and a K-12 program. In addition, students from underrepresented groups will be actively engaged in the project.
该学院早期职业发展(CAREER)计划奖的研究目标是了解和利用电活性石墨烯-聚合物系统(eGPS)的大变形,不稳定性和微结构演变,以实现极高的致动应力和应变,沿着其他新特性,如超疏水性和可调润湿性。在电压作用下,现有的聚合物可以达到相对高的应力或应变水平,但不能同时达到这两个水平。这种致动应力和应变的不平衡极大地限制了这些聚合物的能量密度,并阻碍了它们有前途的应用。所提出的eGPS创新性地将聚合物共混物和大面积石墨烯的膜层压成具有层次图案的层压体。聚合物共混物综合了不同聚合物的优点,而图案化的石墨烯作为轻质透明电极具有新颖的可调性能。拟议的研究将采取综合的实验和理论方法。PI发明的多场显微系统将用于探索eGPS的机电特性和不稳定性,并将开发多尺度理论模型以定量指导新材料和结构的设计。电活性石墨烯-聚合物系统代表了一种新型的软活性材料,具有上级天然肌肉的多个性能参数。 这些所谓的人造肌肉正在实现从机器人和药物输送到能量收集和存储的各种技术。特别是,人造肌肉有望通过提供负担得起的设备,如轻型拟人假肢和全页盲文显示器,大大改善数百万残疾人的生活质量。新型人造肌肉的广泛影响可能类似于压电陶瓷在二十世纪对全球社会的影响。该项目的综合教育目标包括将软活性材料设计融入工程课程,人工肌肉教师研究经验计划和K-12计划。此外,来自代表性不足群体的学生将积极参与该项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuanhe Zhao其他文献
Mathematical modeling of electron beam cold hearth casting of titanium alloy ingots
- DOI:
10.14288/1.0078870 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Xuanhe Zhao - 通讯作者:
Xuanhe Zhao
Fracture and fatigue of entangled and unentangled polymer networks
缠结和非缠结聚合物网络的断裂和疲劳
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Dongchang Zheng;Shaoting Lin;J. Ni;Xuanhe Zhao - 通讯作者:
Xuanhe Zhao
See how your body works in real time - wearable ultrasound is on its way.
实时了解您的身体如何运作 - 可穿戴超声波即将问世。
- DOI:
10.1038/d41586-024-02066-5 - 发表时间:
2024 - 期刊:
- 影响因子:64.8
- 作者:
Chonghe Wang;Xuanhe Zhao - 通讯作者:
Xuanhe Zhao
Tough Hydrogel-Based Biocontainment of Engineered Organisms for Continuous, Self-Powered Sensing and Computation
基于坚韧水凝胶的工程生物生物防护,可实现连续自供电传感和计算
- DOI:
10.1101/2020.02.11.941120 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Tzu;E. Tham;Xinyue Liu;Kevin Yehl;A. J. Rovner;H. Yuk;Farren J. Isaacs;Xuanhe Zhao;T. Lu - 通讯作者:
T. Lu
A bioadhesive robot to activate muscles
- DOI:
10.1038/s41563-022-01470-4 - 发表时间:
2023-02 - 期刊:
- 影响因子:41.2
- 作者:
Xuanhe Zhao - 通讯作者:
Xuanhe Zhao
Xuanhe Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuanhe Zhao', 18)}}的其他基金
EFRI C3 SoRo: Functional-Domain Soft Robots Precisely Controlled by Quantitative Dynamic Models and Data
EFRI C3 SoRo:由定量动态模型和数据精确控制的功能域软机器人
- 批准号:
1935291 - 财政年份:2019
- 资助金额:
$ 35.52万 - 项目类别:
Standard Grant
Designing Extremely Robust Soft Wet Adhesives by Exploiting Molecular-Scale Reversible Crosslinks and Macro-Scale Instabilities
利用分子尺度可逆交联和宏观尺度不稳定性设计极其坚固的软湿粘合剂
- 批准号:
1661627 - 财政年份:2017
- 资助金额:
$ 35.52万 - 项目类别:
Standard Grant
Transformative Skin: Controlled Electromechanical Instability on Polymer Surfaces
变革性皮肤:控制聚合物表面的机电不稳定性
- 批准号:
1463732 - 财政年份:2014
- 资助金额:
$ 35.52万 - 项目类别:
Standard Grant
CAREER: Electroactive Graphene-Polymer System with Extreme Actuation and Tunable Properties
职业:具有极端驱动和可调特性的电活性石墨烯聚合物系统
- 批准号:
1253495 - 财政年份:2013
- 资助金额:
$ 35.52万 - 项目类别:
Standard Grant
Transformative Skin: Controlled Electromechanical Instability on Polymer Surfaces
变革性皮肤:控制聚合物表面的机电不稳定性
- 批准号:
1200515 - 财政年份:2012
- 资助金额:
$ 35.52万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Shedding Light on The Microbial Ecologyand Ecophysiology of Electroactive Anammox Communities
合作研究:揭示电活性厌氧氨氧化群落的微生物生态学和生态生理学
- 批准号:
2327516 - 财政年份:2024
- 资助金额:
$ 35.52万 - 项目类别:
Standard Grant
Collaborative Research: Shedding Light on The Microbial Ecologyand Ecophysiology of Electroactive Anammox Communities
合作研究:揭示电活性厌氧氨氧化群落的微生物生态学和生态生理学
- 批准号:
2327515 - 财政年份:2024
- 资助金额:
$ 35.52万 - 项目类别:
Standard Grant
RENEWABLE RESOURCES AND CLEAN GROWTH - Developing electroactive materials formed through biological processes for energy storage applications
可再生资源和清洁增长 - 开发通过生物过程形成的电活性材料用于储能应用
- 批准号:
2890741 - 财政年份:2023
- 资助金额:
$ 35.52万 - 项目类别:
Studentship
3D Bipolar Electroactive Architectures for Wireless BioStimulation
用于无线生物刺激的 3D 双极电活性架构
- 批准号:
DP230101369 - 财政年份:2023
- 资助金额:
$ 35.52万 - 项目类别:
Discovery Projects
Development of Multi-functional Electroactive Fibers for Electrophysiology Applications
用于电生理学应用的多功能电活性纤维的开发
- 批准号:
547502-2020 - 财政年份:2022
- 资助金额:
$ 35.52万 - 项目类别:
Postgraduate Scholarships - Doctoral
Electroactive Self-Assembled Monolayers: Putting Surface-Confined Redox Reactions to Work
电活性自组装单层膜:使表面限制的氧化还原反应发挥作用
- 批准号:
RGPIN-2019-04883 - 财政年份:2022
- 资助金额:
$ 35.52万 - 项目类别:
Discovery Grants Program - Individual
Preparation of electroactive low dimensional materials for advanced electrocatalysis and sensors applications
用于先进电催化和传感器应用的电活性低维材料的制备
- 批准号:
RGPIN-2022-05089 - 财政年份:2022
- 资助金额:
$ 35.52万 - 项目类别:
Discovery Grants Program - Individual
Functional Electroactive 2D-Materials for Bio and Chemical Sensing
用于生物和化学传感的功能性电活性二维材料
- 批准号:
CRC-2020-00313 - 财政年份:2022
- 资助金额:
$ 35.52万 - 项目类别:
Canada Research Chairs
Electroactive Self-Assembled Monolayers: Putting Surface-Confined Redox Reactions to Work
电活性自组装单层膜:使表面限制的氧化还原反应发挥作用
- 批准号:
RGPIN-2019-04883 - 财政年份:2021
- 资助金额:
$ 35.52万 - 项目类别:
Discovery Grants Program - Individual
Development of Multi-functional Electroactive Fibers for Electrophysiology Applications
用于电生理学应用的多功能电活性纤维的开发
- 批准号:
547502-2020 - 财政年份:2021
- 资助金额:
$ 35.52万 - 项目类别:
Postgraduate Scholarships - Doctoral