NCS-FO: Real-time optical readout and control of population neural activity with cellular resolution
NCS-FO:以细胞分辨率实时光学读出和控制群体神经活动
基本信息
- 批准号:1533598
- 负责人:
- 金额:$ 70万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ECCS- Prop. No. 1533598PI: Gong, Yiyang Institute: Duke UniversityTitle: NCS-FO: Real-time optical readout and control of population neural activity with cellular resolutionObjective: This project will develop a mechanism for simultaneously controlling and reading out neural activity when being activated by optogenetic techniques; this capability will surpass a previous limitation in neural studies. The proposal is separated into three aims: 1) develop calcium sensors and optogenetic channels active on different wavelength ranges to allow simultaneous readout and control, 2) develop a dual-beam two photon microscope, and 3) develop imaging software that can process neural activity in real-time. Nontechnical Understanding neural function requires examining specific subsets of the vast numbers of neurons in the brain. Recently developed optogenetics tools, such as optogenetic stimulation and calcium imaging, have partially fulfilled the need to target these specific sets of neurons and study their function. These techniques deliver engineered genes to targeted neural populations, and use light to manipulate or measure neural activity. Current optogenetic tools lack the spatiotemporal resolution to causally study many individual neurons in parallel on fast time scales; they only make broad conclusions either on near-millimeter sized brain regions, or over the timescale of many action potentials. We propose to integrate the design and implementation of optical and genetic tools to greatly refine the scale of investigating neural activity. Specifically, we will create two optically independent channels: one channel for fast, spatially precise optical patterning to control individual neurons; and one channel for independent recording of neural activity from individual neurons. We will then integrate these two channels by creating software that instantaneously patterns optical excitation based on the optical recording. Integrative design and engineering of this expansive set of tools will enable neuroscientists to quickly manipulate and control large populations of single neurons, a capability that does not exist presently. Our technology will allow the community to directly explore how neural activity patterns of many individual neurons in one brain region drive downstream neural activity. This novel probing of functional connectivity is exactly the type of study needed to better understand the coordination of neural activity in healthy and diseased brains. Beyond the specific application of neuroscience, training students within our multidisciplinary setting will create the next generation of scientists capable of tackling the broad set of technical challenges facing society today. Technical Optical imaging of brain activity has steadily developed into a staple technique within neuroscience labs over the past decade. In combination with genetically encoded sensors of neural activity, optical methods enable genetic targeting and chronic, simultaneous imaging of many individual neurons. One significant weakness of existing optical techniques when compared to electrophysiology is the inability to simultaneously measure and control the activity of a neuron in real time. We propose to address this shortcoming by developing an optical imaging system and data processing software suite that will enable real-time optical readout of neural activity and real-time neural feedback via optical excitation, all with cellular level specificity and in parallel over a large population of neurons. This new ability to optically record and manipulate many genetically or functionally specified neurons individually will augment current studies using bulk neural activation or inhibition; the fine scale perturbations of neurons will tease apart the details of neural circuits. Specifically, we will engineer a set of optogenetic actuators, fluorescent sensors, and microscopy tools that will enable optical readout and control of neurons in different wavelength channels. We will also develop fast image processing algorithms that quickly convert images to neural activity of individual neurons, thereby enabling real-time control of neural activity based on the optical readout. Recently, improvements to these tools occurred independently. Our proposal will address the integrated development of the tool set, and effectively employ trade-offs between the individual components. For example, simultaneous engineering of the protein sensor, imaging processing software, and optical imaging hardware will optimize the readout fidelity. Similarly, joint design of the genetic tools' spectral separation and the optical spatiotemporal resolution will extend optical control precision. Integration of these developments to examine neural function at the cellular level is unprecedented: successful advancement of this research will enable novel examination of the brain and help guide targeted biomedical therapi
ECCS- Prop. No. 1533598PI:Gong, Yiyang 研究所:杜克大学 标题:NCS-FO:以细胞分辨率实时光学读出和控制群体神经活动 目的:该项目将开发一种在被光遗传学技术激活时同时控制和读出神经活动的机制;这种能力将超越之前神经研究的限制。 该提案分为三个目标:1)开发在不同波长范围内活跃的钙传感器和光遗传学通道,以允许同时读出和控制,2)开发双光束双光子显微镜,3)开发可以实时处理神经活动的成像软件。非技术性的理解神经功能需要检查大脑中大量神经元的特定子集。最近开发的光遗传学工具,例如光遗传学刺激和钙成像,已经部分满足了针对这些特定神经元组并研究其功能的需求。这些技术将工程基因传递给目标神经群体,并利用光来操纵或测量神经活动。目前的光遗传学工具缺乏时空分辨率,无法在快速时间尺度上并行研究许多单个神经元;他们仅对近毫米大小的大脑区域或许多动作电位的时间尺度做出广泛的结论。我们建议整合光学和遗传工具的设计和实现,以极大地细化研究神经活动的规模。具体来说,我们将创建两个光学独立通道:一个用于快速、空间精确的光学图案控制单个神经元的通道;另一个用于快速、空间精确的光学图案控制单个神经元的通道。以及一个用于独立记录单个神经元神经活动的通道。然后,我们将通过创建基于光学记录即时模式光学激发的软件来集成这两个通道。这套广泛的工具的综合设计和工程将使神经科学家能够快速操纵和控制大量的单个神经元,这是目前还不存在的能力。我们的技术将使社区能够直接探索一个大脑区域中许多单个神经元的神经活动模式如何驱动下游神经活动。这种对功能连接的新颖探索正是更好地了解健康和患病大脑中神经活动协调所需的研究类型。除了神经科学的具体应用之外,在我们的多学科环境中培训学生将培养下一代科学家,使其能够应对当今社会面临的广泛技术挑战。技术 过去十年中,大脑活动的光学成像已稳步发展成为神经科学实验室的主要技术。与神经活动的基因编码传感器相结合,光学方法可以实现对许多单个神经元的基因靶向和长期同步成像。与电生理学相比,现有光学技术的一个显着弱点是无法同时实时测量和控制神经元的活动。我们建议通过开发光学成像系统和数据处理软件套件来解决这一缺点,该套件将能够通过光学激发实时光学读出神经活动和实时神经反馈,所有这些都具有细胞水平特异性,并且在大量神经元上并行。这种以光学方式单独记录和操纵许多遗传或功能特定神经元的新能力将增强当前使用批量神经激活或抑制的研究;神经元的精细扰动将梳理神经回路的细节。具体来说,我们将设计一套光遗传学执行器、荧光传感器和显微镜工具,以实现不同波长通道中神经元的光学读出和控制。我们还将开发快速图像处理算法,将图像快速转换为单个神经元的神经活动,从而实现基于光学读数的神经活动的实时控制。最近,这些工具的改进是独立进行的。我们的建议将解决工具集的集成开发,并有效地在各个组件之间进行权衡。例如,蛋白质传感器、成像处理软件和光学成像硬件的同步工程将优化读出保真度。同样,遗传工具的光谱分离和光学时空分辨率的联合设计将提高光学控制精度。将这些进展整合到细胞水平上检查神经功能是前所未有的:这项研究的成功进展将使大脑的新检查成为可能,并有助于指导有针对性的生物医学治疗
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yiyang Gong其他文献
Ultrafast Internal Exciton Dissociation through Edge States in MoS2 Nanosheets with Diffusion Blocking
通过扩散阻挡的 MoS2 纳米片边缘态的超快内部激子解离
- DOI:
10.1021/acs.nanolett.1c04987 - 发表时间:
2022 - 期刊:
- 影响因子:10.8
- 作者:
Xinyu Sui;Huimin Wang;Cheng Liang;Qing Zhang;Han Bo;Keming Wu;Zhuoya Zhu;Yiyang Gong;Shuai Yue;Hailong Chen;Qiuyu Shang;Yang Mi;Peng Gao;Yong Zhang;Sheng Meng;Xinfeng Liu - 通讯作者:
Xinfeng Liu
Fastest-ever calcium sensors broaden the potential of neuronal imaging
有史以来最快的钙传感器拓展了神经元成像的潜力
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:64.8
- 作者:
Michael B. Ryan;A. Churchland;Yiyang Gong;Casey M. Baker - 通讯作者:
Casey M. Baker
A Ratiometric Calcium Sensors using Bright Green and Red Fluorescent Proteins for Neural Calcium Imaging
使用亮绿色和红色荧光蛋白进行神经钙成像的比率钙传感器
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Diming Zhang;Kimberly K. Lennox;Zhijing Zhu;Emily Redington;Yiyang Gong - 通讯作者:
Yiyang Gong
Nonlinear Infrared Photodetection Based on Strong Nondegenerate Two‐Photon Absorption of Perovskite Single Crystal
基于钙钛矿单晶强非简并双光子吸收的非线性红外光电探测
- DOI:
10.1002/adom.202200400 - 发表时间:
2022-05 - 期刊:
- 影响因子:9
- 作者:
Wei Wang;Qi Wei;Yiyang Gong;Guichuan Xing;Bo Wu;Guofu Zhou - 通讯作者:
Guofu Zhou
Void volume fraction of granular scaffolds
颗粒支架的空隙体积分数
- DOI:
10.1101/2022.06.14.496197 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Lindsay Riley;Grace Wei;Yijun Bao;Peter Cheng;Katrina L. Wilson;Yining Liu;Yiyang Gong;Tatiana Segura - 通讯作者:
Tatiana Segura
Yiyang Gong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yiyang Gong', 18)}}的其他基金
CAREER: Fast optical voltage imaging for detailing bursts of neural activity
职业:快速光学电压成像,用于详细描述神经活动的爆发
- 批准号:
1847540 - 财政年份:2019
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
相似国自然基金
影像分型预测HAIC-FO优势肝癌人群及影
像基因组学的研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
ATP合酶Fo基团在酸性环境的生理活性及其作用机制
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
烟曲霉F1Fo-ATP合成酶β亚基在侵袭性曲霉病发生中的作用及机制研究
- 批准号:82304035
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白念珠菌F1Fo-ATP合酶中创新药靶的识别与确认研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
GRACE-FO高精度姿态数据处理及其对时变重力场影响的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ATP合酶FO亚基参与调控弓形虫ATP合成的分子机制
- 批准号:32202832
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
顾及GRACE-FO极轨特性的高分辨率Mascon时变重力场建模理论与方法
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
GRACE-FO微波测距系统原始数据处理、噪声分析与评估
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
利用GRACE-FO和中国重力卫星协同探测时变重力场和质量分布变化
- 批准号:42061134010
- 批准年份:2020
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
联合GRACE/GRACE-FO和GNSS形变数据反演连续精细的区域地表质量变化
- 批准号:41974015
- 批准年份:2019
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
NCS-FO: Cognitive maps as a framework for organizing relationships in large-scale real social networks
NCS-FO:认知地图作为大规模真实社交网络中组织关系的框架
- 批准号:
2123469 - 财政年份:2021
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: NCS: FO: Enhancing Episodic Memory through Real-world Integration of Brain Recording and Stimulation with Semantic Alignment of Human and IoT Perception
合作研究:NCS:FO:通过在现实世界中整合大脑记录和刺激以及人类和物联网感知的语义对齐来增强情景记忆
- 批准号:
2124252 - 财政年份:2021
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: NCS: FO: Enhancing Episodic Memory through Real-world Integration of Brain Recording and Stimulation with Semantic Alignment of Human and IoT Perception
合作研究:NCS:FO:通过在现实世界中整合大脑记录和刺激以及人类和物联网感知的语义对齐来增强情景记忆
- 批准号:
2124130 - 财政年份:2021
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Improved Stochastic Modeling in GRACE/GRACE-FO Real DataProcessing 2 (ISTORE-2)
GRACE/GRACE-FO Real DataProcessing 2 (ISTORE-2) 中改进的随机建模
- 批准号:
417199257 - 财政年份:2019
- 资助金额:
$ 70万 - 项目类别:
Research Units
Improved STOchastic modelling in GRACE/GRACE-FO REal data processing (ISTORE)
GRACE/GRACE-FO 真实数据处理 (ISTORE) 中改进的 STochastic 建模
- 批准号:
417221075 - 财政年份:2019
- 资助金额:
$ 70万 - 项目类别:
Research Units
NCS-FO: How real-world interaction networks shape and are shaped by neural information processing
NCS-FO:现实世界的交互网络如何塑造以及神经信息处理如何塑造
- 批准号:
1835239 - 财政年份:2019
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
NCS-FO: Electrocortical Processes in Real World Locomotion
NCS-FO:现实世界运动中的电皮层过程
- 批准号:
1835317 - 财政年份:2018
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
NCS-FO: Sub-millisecond Optically-triggered Compound Release to Study Real-time Brain Activity and Behavior
NCS-FO:亚毫秒光触发化合物释放,用于研究实时大脑活动和行为
- 批准号:
1631910 - 财政年份:2016
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
NCS-FO: Collaborative Research: Micro-scale Real-time Decoding and Closed-loop Modulation of Human Language
NCS-FO:协作研究:人类语言的微尺度实时解码和闭环调制
- 批准号:
1533664 - 财政年份:2015
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
NCS-FO: Collaborative Research: Micro-scale Real-time Decoding and Closed-loop Modulation of Human Language
NCS-FO:协作研究:人类语言的微尺度实时解码和闭环调制
- 批准号:
1533688 - 财政年份:2015
- 资助金额:
$ 70万 - 项目类别:
Standard Grant














{{item.name}}会员




