AitF: FULL: From Worst-Case to Realistic-Case Analysis for Large Scale Machine Learning Algorithms

AitF:完整:大规模机器学习算法从最坏情况到现实情况分析

基本信息

  • 批准号:
    1535967
  • 负责人:
  • 金额:
    $ 72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

The aim of this project is to develop mathematical models, analysis, and algorithms that will advance both the design and understanding of large-scale machine learning systems. In recent years, machine learning has come into widespread use across a range of applications, and we have also seen significant advances in the theoretical understanding of learning processes. Yet despite these successes, there remains a gulf between theory and application. For example, applications often demonstrate success on problems that theory tells us are intractable in the worst case. Furthermore, as modern machine learning applications scale up from learning of single tasks to learning many tasks simultaneously, new theory is needed to analyze these larger scale multi-task learning settings. This project aims to bridge this gap by developing and applying theory targeted toward realistic-case analysis of learning problems, which capture the structures that enable applications to succeed even when theoretical analyses show the impossibility of doing so in the worst case. This work will be guided by problems at the core of NELL and InMind, two current learning systems that address large-scale multi-task machine learning problems, for reading the web and providing highly personalized electronic assistants to hundreds of interconnected mobile phone users.More specifically, this project has three main components:(1) To develop computationally efficient algorithms for clustering, constrained optimization, and related optimization tasks crucial to large-scale machine learning, with provable guarantees under natural, realistic non-worst-case analysis models.(2) To develop foundations and practical algorithms for multi-task and life-long learning that exploit explicit and implicit structure to minimize key resources including computation time and human labeling effort, as well as address key constraints such as privacy.(3) To apply the algorithms developed to solve key challenges in two current large-scale learning systems, NELL and InMind.The proposed work will aid the development of large-scale machine learning applications, as well as create important connections between multiple areas of significant importance in modern machine learning and theoretical computer science. In addition to advising students on topics connected to this project, research progress (on multi-task learning, life-long learning, and clustering) will be integrated in the curricula of several courses at CMU and course materials will be made available on the world wide web. Course projects based on this research will be available to students in the introductory machine learning course at CMU, which enrolls over 600 students each year. In addition, students seeking topics for undergraduate thesis or independent study may also pursue research affiliated with this project.
该项目的目的是开发数学模型,分析和算法,以促进大型机器学习系统的设计和理解。 近年来,机器学习在一系列应用中得到了广泛的应用,我们也看到了学习过程的理论理解的重大进展。然而,尽管取得了这些成功,理论和应用之间仍然存在鸿沟。 例如,应用程序通常在理论告诉我们在最坏情况下难以解决的问题上取得成功。 此外,随着现代机器学习应用从单个任务的学习扩展到同时学习多个任务,需要新的理论来分析这些更大规模的多任务学习设置。 该项目旨在通过开发和应用针对学习问题的现实案例分析的理论来弥合这一差距,该理论捕捉了即使在理论分析显示在最坏情况下不可能这样做的情况下也能使应用程序成功的结构。 这项工作将以NELL和InMind的核心问题为指导,这两个当前的学习系统解决了大规模多任务机器学习问题,用于阅读网络,并为数百个互联的移动的电话用户提供高度个性化的电子助理。更具体地说,这个项目有三个主要组成部分:(1)开发用于集群、约束优化和对大规模机器学习至关重要的相关优化任务的计算高效算法,在自然的、现实的非最坏情况分析模型下具有可证明的保证。(2)开发多任务和终身学习的基础和实用算法,利用显式和隐式结构来最大限度地减少关键资源,包括计算时间和人工标记工作,以及解决隐私等关键约束。(3)应用开发的算法来解决当前两个大规模学习系统NELL和InMind中的关键挑战。拟议的工作将有助于大规模机器学习应用程序的开发,并在现代机器学习和理论计算机科学中的多个重要领域之间建立重要联系。除了就与该项目有关的主题向学生提供咨询外,研究进展(关于多任务学习、终身学习和集群)将被纳入CMU的几门课程的课程中,课程材料将在万维网上提供。基于这项研究的课程项目将提供给CMU机器学习入门课程的学生,该课程每年招收600多名学生。此外,寻求本科论文或独立研究主题的学生也可以从事与本项目相关的研究。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Diversified Strategies for Mitigating Adversarial Attacks in Multiagent Systems
Semi-bandit Optimization in the Dispersed Setting
分散环境中的半老虎优化
Learning piecewise Lipschitz functions in changing environments
  • DOI:
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dravyansh Sharma;Maria-Florina Balcan;Travis Dick
  • 通讯作者:
    Dravyansh Sharma;Maria-Florina Balcan;Travis Dick
Learning to Link
学习链接
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maria-Florina Balcan其他文献

Interactive Machine Learning Mustafa Bilgic
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maria-Florina Balcan
  • 通讯作者:
    Maria-Florina Balcan
Data-driven Algorithm Design
  • DOI:
    10.1017/9781108637435.036
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maria-Florina Balcan
  • 通讯作者:
    Maria-Florina Balcan
N ov 2 01 4 Statistical Active Learning Algorithms for Noise Tolerance and Differential Privacy
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maria-Florina Balcan
  • 通讯作者:
    Maria-Florina Balcan

Maria-Florina Balcan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maria-Florina Balcan', 18)}}的其他基金

RI: Medium: Learning to Search: Provable Guarantees and Applications
RI:媒介:学习搜索:可证明的保证和应用
  • 批准号:
    1901403
  • 财政年份:
    2019
  • 资助金额:
    $ 72万
  • 项目类别:
    Standard Grant
AF: Small: Learning Theory for a Modern World: Transfer Learning, Unsupervised Learning, and Beyond Prediction
AF:小:现代世界的学习理论:迁移学习、无监督学习和超越预测
  • 批准号:
    1910321
  • 财政年份:
    2019
  • 资助金额:
    $ 72万
  • 项目类别:
    Standard Grant
RI: AF: Small: Collaborative Research: Differentially Private Learning: From Theory To Applications
RI:AF:小型:协作研究:差异化私人学习:从理论到应用
  • 批准号:
    1618714
  • 财政年份:
    2016
  • 资助金额:
    $ 72万
  • 项目类别:
    Standard Grant
CAREER: Machine Learning Theory with Connections to Algorithmic Game Theory and Combinatorial Optimization
职业:机器学习理论与算法博弈论和组合优化的联系
  • 批准号:
    1451177
  • 财政年份:
    2014
  • 资助金额:
    $ 72万
  • 项目类别:
    Continuing Grant
AF: Small: Foundations for Learning in the Age of Big Data---New Frameworks and Algorithms for Interactive, Distributed, and Multi-Task Machine Learning
AF:小:大数据时代的学习基础——交互式、分布式、多任务机器学习的新框架和算法
  • 批准号:
    1422910
  • 财政年份:
    2014
  • 资助金额:
    $ 72万
  • 项目类别:
    Standard Grant
CAREER: Machine Learning Theory with Connections to Algorithmic Game Theory and Combinatorial Optimization
职业:机器学习理论与算法博弈论和组合优化的联系
  • 批准号:
    0953192
  • 财政年份:
    2009
  • 资助金额:
    $ 72万
  • 项目类别:
    Continuing Grant

相似国自然基金

钴基Full-Heusler合金的掺杂效应和薄膜噪声特性研究
  • 批准号:
    51871067
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Human-Robot Co-Evolution: Achieving the full potential of future workplaces
人机协同进化:充分发挥未来工作场所的潜力
  • 批准号:
    DP240100938
  • 财政年份:
    2024
  • 资助金额:
    $ 72万
  • 项目类别:
    Discovery Projects
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
  • 批准号:
    EP/Y035976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 72万
  • 项目类别:
    Research Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 72万
  • 项目类别:
    Standard Grant
CAREER: Informed Testing — From Full-Field Characterization of Mechanically Graded Soft Materials to Student Equity in the Classroom
职业:知情测试 – 从机械分级软材料的全场表征到课堂上的学生公平
  • 批准号:
    2338371
  • 财政年份:
    2024
  • 资助金额:
    $ 72万
  • 项目类别:
    Standard Grant
CAREER: From Flamelet to Full-Scale: Advancing Plasma-Assisted Combustion for Low-Emission Sustainable Fuels
职业生涯:从小火焰到全面:推进低排放可持续燃料的等离子体辅助燃烧
  • 批准号:
    2339518
  • 财政年份:
    2024
  • 资助金额:
    $ 72万
  • 项目类别:
    Continuing Grant
STTR Phase II: Dermatologist-level detection of suspicious pigmented skin lesions from high-resolution full-body images
STTR II 期:通过高分辨率全身图像对可疑色素性皮肤病变进行皮肤科医生级别的检测
  • 批准号:
    2335086
  • 财政年份:
    2024
  • 资助金额:
    $ 72万
  • 项目类别:
    Cooperative Agreement
Toward carbon-neutral society: Development of a full-sustainable eco-friendly green mining process for gold recovery
迈向碳中和社会:开发完全可持续的环保绿色采矿工艺以回收黄金
  • 批准号:
    24K17540
  • 财政年份:
    2024
  • 资助金额:
    $ 72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 72万
  • 项目类别:
    Continuing Grant
All Analogue Full-duplex Dual-receiver Radio for Wideband Mm-wave Communications
用于宽带毫米波通信的全模拟全双工双接收器无线电
  • 批准号:
    EP/X041581/1
  • 财政年份:
    2024
  • 资助金额:
    $ 72万
  • 项目类别:
    Research Grant
Full mitigation of birefringence for high-precision optical experiments
完全缓解双折射,实现高精度光学实验
  • 批准号:
    24K00649
  • 财政年份:
    2024
  • 资助金额:
    $ 72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了