Sampling Criteria for Monitoring Influenza Emergencies Under Constrained Testing Capabilities
检测能力有限下监测流感突发事件的采样标准
基本信息
- 批准号:1537379
- 负责人:
- 金额:$ 19.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Influenza viruses create emergencies almost every year, and existing surveillance systems are important for addressing uncertainty in the disease detection, monitoring and control. An essential tool for monitoring influenza activity is the trend of cases confirmed with an influenza virus type. Confirmed case trends are useful to estimate when the season starts and which viruses are circulating, as each flu virus targets different age groups and produces symptoms of different types and severity. During influenza emergencies, specimens from infected cases massively arrive at the testing laboratories, which leads to chaos and increased operational costs as the labs increase their capacity in response to the overwhelming testing demand. Moreover, confirmed case data produced under this chaotic environment is being used intently by decision makers and the research community. This award supports fundamental research to understand how conventional and non-conventional methods for specimen sampling minimize the publication delay and uncertainty in the daily number of influenza confirmed cases. The new findings and methods will not only improve sampling and testing practices, but will also guarantee quality of data to its users. The research promotes diversity, as female graduate students will be recruited for the project. In addition, the research promotes knowledge dissemination, as training materials will be prepared and delivered to public health policymakers, and graduate students in engineering and medicine.Analysts use the reported trend of confirmed influenza cases to identify the epidemiological features of a circulating virus. However, there is uncertainty about the extent to which confirmed cases are representative of the properties of the virus. To address this concern, several methods have been suggested but they present significant limitations. For example, the methods require information that is hard to estimate, they do not consider constrained lab capacity, and they do not account for the uncertainty in the outbreak evolution and the specimen collection process. The research team will develop a Method for Operations during Disease Emergencies in the Lab (MODEL). MODEL is an algorithm for real-time sampling and Bayesian learning of epidemic parameters that accounts for the uncertainties in the course of the disease and in the specimen collection process. It is expected that MODEL features will contribute to the theory of dynamic sampling. Research efforts will also focus on a framework to evaluate any type of specimen sampling criteria during an influenza emergency. The results derived from the framework will contribute to the theory of management and surveillance of viral infectious diseases.
流感病毒几乎每年都会造成突发事件,现有的监测系统对于解决疾病检测、监测和控制方面的不确定性至关重要。监测流感活动的一个重要工具是流感病毒类型确诊病例的趋势。确诊病例趋势有助于估计季节开始的时间和哪些病毒正在传播,因为每种流感病毒针对不同的年龄组,并产生不同类型和严重程度的症状。在流感紧急情况下,来自感染病例的样本大量到达检测实验室,这导致了混乱,随着实验室为了应对压倒性的检测需求而增加了能力,增加了运营成本。此外,在这种混乱环境下产生的确诊病例数据正被决策者和研究界认真利用。该奖项支持基础研究,以了解常规和非常规样本采样方法如何将每天确诊流感病例数量的公布延迟和不确定性降至最低。新的发现和方法不仅将改进抽样和测试实践,还将保证其用户的数据质量。这项研究促进了多样性,因为该项目将招募女性研究生。此外,这项研究还促进了知识传播,因为将准备培训材料并提供给公共卫生政策制定者、工程学和医学研究生。分析人员利用报告的确诊流感病例趋势来确定正在传播的病毒的流行病学特征。然而,目前还不确定确诊病例在多大程度上代表了病毒的特性。为了解决这一问题,已经提出了几种方法,但它们存在严重的局限性。例如,这些方法需要难以估计的信息,它们没有考虑受限的实验室能力,它们没有考虑到疫情演变和样本收集过程中的不确定性。研究小组将在实验室开发一种在疾病紧急情况下操作的方法(模型)。模型是一种实时采样和贝叶斯学习流行病参数的算法,该算法考虑了疾病过程和样本采集过程中的不确定性。期望模型特征对动态抽样理论有一定的贡献。研究工作还将侧重于在流感紧急情况下评估任何类型的样本抽样标准的框架。该框架得出的结果将有助于病毒传染病的管理和监测的理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elise deDoncker其他文献
Elise deDoncker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elise deDoncker', 18)}}的其他基金
MRI: Acquisition of a High Performance Cluster for Multidisciplinary Computational Research
MRI:获取用于多学科计算研究的高性能集群
- 批准号:
1126438 - 财政年份:2011
- 资助金额:
$ 19.96万 - 项目类别:
Standard Grant
ALGORITHMS: Distributed Multivariate Integration in a Problem Solving Environment
算法:问题解决环境中的分布式多元集成
- 批准号:
0203776 - 财政年份:2002
- 资助金额:
$ 19.96万 - 项目类别:
Standard Grant
CISE Research Resources: Information Visualization and Incremental Knowledge Discovery in a Cluster Computing Environment
CISE 研究资源:集群计算环境中的信息可视化和增量知识发现
- 批准号:
0130857 - 财政年份:2001
- 资助金额:
$ 19.96万 - 项目类别:
Standard Grant
Distributed Numerical Integration Algorithms and Application
分布式数值积分算法及应用
- 批准号:
0000442 - 财政年份:2000
- 资助金额:
$ 19.96万 - 项目类别:
Standard Grant
Parallel and Distributed Integration Algorithms
并行和分布式积分算法
- 批准号:
9405377 - 财政年份:1994
- 资助金额:
$ 19.96万 - 项目类别:
Standard Grant
相似海外基金
Universal Model Selection Criteria for Scientific Machine Learning
科学机器学习的通用模型选择标准
- 批准号:
DE240100144 - 财政年份:2024
- 资助金额:
$ 19.96万 - 项目类别:
Discovery Early Career Researcher Award
Data-driven phenotyping of central disorders of hypersomnolence with unsupervised clustering: toward more reliable diagnostic criteria
无监督聚类的数据驱动的中枢性嗜睡症表型分析:寻求更可靠的诊断标准
- 批准号:
481046 - 财政年份:2023
- 资助金额:
$ 19.96万 - 项目类别:
Development of collection and preservation criteria and search terms for 'folk material': from factory parts to diaries
制定“民间材料”的收集和保存标准以及搜索术语:从工厂零件到日记
- 批准号:
23K00959 - 财政年份:2023
- 资助金额:
$ 19.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Engaging students in discourse about criteria for judging scientific models
合作研究:让学生参与讨论科学模型的判断标准
- 批准号:
2300831 - 财政年份:2023
- 资助金额:
$ 19.96万 - 项目类别:
Continuing Grant
Multi-criteria decision analysis using 1000Minds to develop consensus weights for classification criteria for scleroderma renal crisis
使用 1000Minds 进行多标准决策分析,制定硬皮病肾危象分类标准的共识权重
- 批准号:
487943 - 财政年份:2023
- 资助金额:
$ 19.96万 - 项目类别:
Miscellaneous Programs
Developing and Evaluating Criteria for Awarding Digital Badges to Visualize Future Faculty' Teaching Experience
制定和评估授予数字徽章的标准,以可视化未来教师的教学经验
- 批准号:
23K02682 - 财政年份:2023
- 资助金额:
$ 19.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing Information Criteria for Modern Statistics
制定现代统计信息标准
- 批准号:
23H00809 - 财政年份:2023
- 资助金额:
$ 19.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Establishment of Evaluation Criteria by Simplified Mastication Using Ultrasonic Diagnostic Equipment
利用超声波诊断设备建立简化咀嚼评价标准
- 批准号:
23K16099 - 财政年份:2023
- 资助金额:
$ 19.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Establishment of new maxillofacial morphology evaluation criteria in patients with HFM
新的HFM患者颌面部形态学评估标准的建立
- 批准号:
23K16127 - 财政年份:2023
- 资助金额:
$ 19.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Realization of Quantitatively Evaluation Criteria for Atypia based on Morphological Features of Cellular Tissue towards the Construction of Morphology in Malignant Lymphoma
实现基于细胞组织形态特征的异型性定量评价标准,构建恶性淋巴瘤形态学
- 批准号:
23KJ1141 - 财政年份:2023
- 资助金额:
$ 19.96万 - 项目类别:
Grant-in-Aid for JSPS Fellows