Distributed Numerical Integration Algorithms and Application

分布式数值积分算法及应用

基本信息

  • 批准号:
    0000442
  • 负责人:
  • 金额:
    $ 31.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-05-01 至 2003-04-30
  • 项目状态:
    已结题

项目摘要

Computing the values of integrals is one of the fundamental problems of calculus and its applications; numerical integration solves this problem for complex functions that cannot be handled analytically. This project will significantly extend the ParInt 1.0 system for performing numerical integration developed under previous NSF support. It will add techniques that enable the system to handle integration problems with a variety of difficult characteristics (e.g. singularities, high dimensions, etc.). This includes the development of a hierarchical process structure for the computation of large collections of integrals (e.g. finite element problems), extrapolation techniques for singular problems, and Quasi-Monte Carlo techniques for solving problems of high dimensions (e.g. computational finance). Corresponding additions to the package's graphical interface will allow for easy use across research disciplines. In particular, visualization tools to help the user see why a problem is difficult (and suggest alternative formulations) and a server allowing users to submit integration problems remotely will be incorporated.
计算积分的值是微积分及其应用的基本问题之一;数值积分解决了这个问题的复杂函数,不能解析处理。该项目将显著扩展ParInt 1.0系统,用于执行在先前NSF支持下开发的数值积分。它将增加一些技术,使系统能够处理具有各种困难特性(例如奇点,高维等)的集成问题。这包括开发用于计算大量积分(例如有限元问题)的分层过程结构,奇异问题的外推技术以及用于解决高维问题(例如计算金融)的准蒙特卡罗技术。相应的软件包的图形界面将允许跨学科的研究容易使用。特别是,可视化工具,以帮助用户看到为什么一个问题是困难的(并建议替代配方)和一个服务器,允许用户远程提交集成问题将被纳入。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elise deDoncker其他文献

Elise deDoncker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elise deDoncker', 18)}}的其他基金

Sampling Criteria for Monitoring Influenza Emergencies Under Constrained Testing Capabilities
检测能力有限下监测流感突发事件的采样标准
  • 批准号:
    1537379
  • 财政年份:
    2015
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a High Performance Cluster for Multidisciplinary Computational Research
MRI:获取用于多学科计算研究的高性能集群
  • 批准号:
    1126438
  • 财政年份:
    2011
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Standard Grant
ALGORITHMS: Distributed Multivariate Integration in a Problem Solving Environment
算法:问题解决环境中的分布式多元集成
  • 批准号:
    0203776
  • 财政年份:
    2002
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Standard Grant
CISE Research Resources: Information Visualization and Incremental Knowledge Discovery in a Cluster Computing Environment
CISE 研究资源:集群计算环境中的信息可视化和增量知识发现
  • 批准号:
    0130857
  • 财政年份:
    2001
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Standard Grant
Parallel and Distributed Integration Algorithms
并行和分布式积分算法
  • 批准号:
    9405377
  • 财政年份:
    1994
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Standard Grant

相似海外基金

Fredholm Alternative Quadrature: A Novel Framework for Numerical Integration Over Geometrically Complex Domains
Fredholm 替代求积:几何复杂域上数值积分的新颖框架
  • 批准号:
    2309712
  • 财政年份:
    2023
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel integration of direct measurements with numerical models for real-time estimation and forecasting of streamflow response to cyclical processes
合作研究:直接测量与数值模型的新颖集成,用于实时估计和预测水流对循环过程的响应
  • 批准号:
    2139649
  • 财政年份:
    2022
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel Integration of Direct Measurements with Numerical Models for Real-time Estimation and Forecasting of Streamflow Response to Cyclical Processes
合作研究:直接测量与数值模型的新颖集成,用于实时估计和预测水流对循环过程的响应
  • 批准号:
    2139663
  • 财政年份:
    2022
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Standard Grant
Multiscale experimental and numerical study of the thermomechanical behavior of composite sandwich panels towards the integration of environmental effects to the virtual testing method
复合材料夹芯板热机械行为的多尺度实验和数值研究,将环境影响整合到虚拟测试方法中
  • 批准号:
    RGPIN-2021-04227
  • 财政年份:
    2022
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Linking pyroclastic surge dynamics and deposits through integration of field data, multiphase numerical modeling, and experiments
合作研究:通过现场数据、多相数值模拟和实验的整合,将火山碎屑涌动动力学与沉积物联系起来
  • 批准号:
    2035649
  • 财政年份:
    2021
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Linking pyroclastic surge dynamics and deposits through integration of field data, multiphase numerical modeling, and experiments
合作研究:通过现场数据、多相数值模拟和实验的整合,将火山碎屑涌动动力学与沉积物联系起来
  • 批准号:
    2035260
  • 财政年份:
    2021
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Standard Grant
Multiscale experimental and numerical study of the thermomechanical behavior of composite sandwich panels towards the integration of environmental effects to the virtual testing method
复合材料夹芯板热机械行为的多尺度实验和数值研究,将环境影响整合到虚拟测试方法中
  • 批准号:
    RGPIN-2021-04227
  • 财政年份:
    2021
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Linking pyroclastic surge dynamics and deposits through integration of field data, multiphase numerical modeling, and experiments
合作研究:通过现场数据、多相数值模拟和实验的整合,将火山碎屑涌动动力学与沉积物联系起来
  • 批准号:
    2034788
  • 财政年份:
    2021
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Standard Grant
Introducing Numerical Integration-based Variational Approximations for Scalable Inference
引入基于数值积分的变分近似以进行可扩展推理
  • 批准号:
    547300-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Multiscale experimental and numerical study of the thermomechanical behavior of composite sandwich panels towards the integration of environmental effects to the virtual testing method
复合材料夹芯板热机械行为的多尺度实验和数值研究,将环境影响整合到虚拟测试方法中
  • 批准号:
    DGECR-2021-00276
  • 财政年份:
    2021
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了