Collaborative Research: Improving Spatial Observability of Dynamic Traffic Systems through Active Mobile Sensor Networks and Crowdsourced Data

合作研究:通过主动移动传感器网络和众包数据提高动态交通系统的空间可观测性

基本信息

  • 批准号:
    1538105
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-15 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

To provide effective traffic congestion mitigation strategies, transportation agencies need to effectively design sensor networks to reliably estimate and predict traffic conditions across large transportation networks. The next generation traffic sensor network will offer large, diverse data streams not only from fixed traffic detectors, but also from many emerging active mobile traffic sensors such as Unmanned Aerial Vehicles, self-driving cars, and crowdsourced data sources from social sensors and transportation network companies. This new generation of agile sensors can provide a much richer but also increasingly complex traffic data environment. Moreover, crowdsourced data is generally uncontrolled, inaccurate and unreliable. This research focuses on new sensor design/control applications to transform the interconnection between travelers, sensors, data and transportation management systems. Methodologies developed in this research will help transportation agencies to efficiently deploy and integrate sensors with limited budgets and resources, identify links/nodes/areas in transportation networks with the weakest sensor coverage, and generate mitigation strategies based on observability measures. Field tests using active mobile sensors will demonstrate the feasibility of the system. Research outcomes will be integrated into teaching through various channels including curriculum development and teaching-oriented software tools that can contribute to the training of future transportation engineers. The collaboration with a Historically Black College and University will help broaden participation of underrepresented student groups.The objective of this research is to develop rigorous mathematical foundations and innovative algorithms to accurately quantify spatial observability of dynamic traffic states, optimize active mobile sensor locations, and mine information from crowdsourced data sources. The research team will first characterize analytical space-time distributions of different traffic states at both macroscopic and microscopic scales, and further develop time-geography-oriented optimization for quantifying spatial observability for dynamic networks. A new class of ubiquitous sensor network design problems is studied for the traffic state estimation stage, and the integration of the well-fused crowdsourced data with optimized fixed and active mobile sensor data is investigated under different levels of activity/penetration rates. Utilizing the structure of underlying dynamic transportation networks, this research aims to develop computationally efficient optimization algorithms to create a distributed and scalable computing framework, which can solve joint scheduling and routing problems of active mobile sensors to increase coverage and accuracy. The research team will develop generic measures of spatial network observability that can provide additional theoretical findings for general civil engineering systems such as earthquake impact detection, ground water pollution source identification, and critical infrastructure monitoring.
为了提供有效的交通拥堵缓解策略,交通机构需要有效地设计传感器网络来可靠地估计和预测大型交通网络的交通状况。下一代交通传感器网络将提供大量、多样化的数据流,不仅来自固定交通检测器,还将来自许多新兴的主动移动交通传感器,如无人机、自动驾驶汽车,以及来自社会传感器和交通网络公司的众包数据源。这种新一代灵活的传感器可以提供更丰富但也越来越复杂的交通数据环境。此外,众包数据普遍不受控制、不准确、不可靠。这项研究的重点是新的传感器设计/控制应用,以改变旅客、传感器、数据和交通管理系统之间的互联。这项研究开发的方法将帮助交通机构在有限的预算和资源下有效地部署和集成传感器,识别交通网络中传感器覆盖最弱的链路/节点/区域,并基于可观测性度量生成缓解策略。使用主动移动传感器进行的现场测试将证明该系统的可行性。研究成果将通过各种渠道纳入教学,包括课程开发和面向教学的软件工具,这些工具有助于培养未来的交通工程师。与历史悠久的黑人学院和大学的合作将有助于扩大代表不足的学生群体的参与。本研究的目标是开发严格的数学基础和创新算法,以准确量化动态交通状态的空间可观测性,优化活动的移动传感器位置,并从众包数据源中挖掘信息。该研究小组将首先在宏观和微观尺度上表征不同交通状态的解析时空分布,并进一步发展面向时间地理的优化,以量化动态网络的空间可观测性。针对交通状态估计阶段,研究了一类新的无处不在的传感器网络设计问题,并研究了在不同活动/渗透率水平下,融合良好的众包数据与优化的固定和主动移动传感器数据的集成。利用底层动态交通网络的结构,本研究旨在开发计算效率高的优化算法,以创建一个分布式和可扩展的计算框架,以解决主动移动传感器的联合调度和路由问题,以提高覆盖和精度。研究小组将开发空间网络可观测性的通用测量方法,为一般土木工程系统提供额外的理论结果,如地震影响检测、地下水污染源识别和关键基础设施监测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kuilin Zhang其他文献

Application and Validation of Dynamic Freight Simulation–Assignment Model to Large-Scale Intermodal Rail Network
动态货运仿真-分配模型在大型多式联运铁路网中的应用和验证
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kuilin Zhang;Rahul Nair;H. Mahmassani;Elise Miller;Vishnu Charan Arcot;A. Y. Kuo;Jing Dong;C. Lu
  • 通讯作者:
    C. Lu
Enabling Transportation Networks with Automated Vehicles: From Individual Vehicle Motion Control to Networked Fleet Management
通过自动车辆实现交通网络:从单车运动控制到网络化车队管理
Comparison of a progressive bone drilling system and a visualized reaming system in percutaneous transforaminal endoscopic discectomy: a comparative study
  • DOI:
    10.1007/s00586-025-09061-y
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Yang Yu;Meng Li;Kuilin Zhang;Qiang Shi
  • 通讯作者:
    Qiang Shi

Kuilin Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kuilin Zhang', 18)}}的其他基金

CAREER: Tackling Congestion in Smart Cities via Data-Driven Optimization-Based Control of Connected and Automated Vehicles
职业:通过数据驱动的基于优化的联网和自动化车辆控制解决智能城市的拥堵问题
  • 批准号:
    1846795
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Improving Upper Division Physics Education and Strengthening Student Research Opportunities at 14 HSIs in California
合作研究:改善加州 14 所 HSI 的高年级物理教育并加强学生研究机会
  • 批准号:
    2345092
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Upper Division Physics Education and Strengthening Student Research Opportunities at 14 HSIs in California
合作研究:改善加州 14 所 HSI 的高年级物理教育并加强学生研究机会
  • 批准号:
    2345093
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SBP: Collaborative Research: Improving Engagement with Professional Development Programs by Attending to Teachers' Psychosocial Experiences
SBP:协作研究:通过关注教师的社会心理体验来提高对专业发展计划的参与度
  • 批准号:
    2314254
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Worker Safety by Understanding Risk Compensation as a Latent Precursor of At-risk Decisions
合作研究:通过了解风险补偿作为风险决策的潜在前兆来提高工人安全
  • 批准号:
    2326937
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Improving Model Representations of Antarctic Ice-shelf Instability and Break-up due to Surface Meltwater Processes
合作研究:改进地表融水过程导致的南极冰架不稳定和破裂的模型表示
  • 批准号:
    2213704
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Measuring, Validating and Improving upon App-Based Privacy Nutrition Labels
合作研究:SaTC:核心:小型:测量、验证和改进基于应用程序的隐私营养标签
  • 批准号:
    2247952
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Reducing Model Uncertainty by Improving Understanding of Pacific Meridional Climate Structure during Past Warm Intervals
合作研究:通过提高对过去温暖时期太平洋经向气候结构的理解来降低模型不确定性
  • 批准号:
    2303568
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales
合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植
  • 批准号:
    2226647
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales
合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植
  • 批准号:
    2226648
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
  • 批准号:
    2306660
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了