Collaborative Research: Neural-Cognitive Analysis of spatial scenes with competing, dynamic sound sources

合作研究:具有竞争性动态声源的空间场景的神经认知分析

基本信息

  • 批准号:
    1539276
  • 负责人:
  • 金额:
    $ 33.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

This project investigates neurocognitive mechanisms that extract important information from a mixture of sound sources. Imagine a day where you could no longer distinguish the honking horn of a car coming right at you from other street sounds. This cognitive ability to attend to one sound source while ignoring others presents an everyday challenge for people with hearing impairments. While the basic neural mechanisms for detecting and localizing single sounds are known, we do not know how the brain accomplishes auditory scene analysis with multiple sound sources. So far, studies have focused on lower brain centers in rodents and carnivores, while the neural mechanisms for source segregation are expected to be at higher levels, in the auditory cortex. This study will record the responses of single cortical neurons and conduct human-subject experiments for the same acoustic scenarios. Based on the integration of these results, a functional auditory model will be developed. This will provide new scientific insights and enable intelligent algorithms for hearing aids, social robotics, and surveillance systems. The project will provide research opportunities for graduate and undergraduate students and include outreach activities and online learning resources for high-school and college students to increase the public awareness of neuroscience. The research results and the model will be shared with the academic community. This proposal will use an interdisciplinary approach to gain understanding of the central mechanisms of auditory scene analysis by integrating psychoacoustical experiments with single-unit electrophysiology. The study will investigate how the auditory system localizes a target sound temporally embedded in a spatially separated masker. Single-unit recording will target the caudal region of the auditory cortex, the putative "where" pathway for complex sound analysis. We hypothesize that cortical activity represents both the old and new sounds, so that the internal representation of the "old" masking source can be subtracted from the overall mixture. This facilitates a clearer perception of the "new" target element, demonstrating a fundamental psychophysical phenomenon within auditory scene analysis. To test this hypothesis, we will identify the neural signals for individual sound sources separately and in combination. We will then interpret these signals based on the perceptual data gained from sound localization tests with multiple moving and stationary sound sources. Discovering the fundamental brain mechanisms for auditory scene analysis will provide new neurophysiological insight into a well-established psychophysical field and offer potential technical solutions for sound-source segregation.
本项目研究从混合声源中提取重要信息的神经认知机制。想象一下,有一天,你再也无法区分迎面而来的汽车喇叭声和其他街道上的声音。这种专注于一个声源而忽略其他声源的认知能力对听力障碍者来说是一个日常挑战。虽然检测和定位单个声音的基本神经机制是已知的,但我们不知道大脑如何完成对多个声源的听觉场景分析。到目前为止,研究主要集中在啮齿动物和食肉动物的较低脑中心,而源分离的神经机制预计将在更高的水平,在听觉皮层。这项研究将记录单个皮层神经元的反应,并对相同的声学场景进行人体实验。基于这些结果的整合,一个功能性的听觉模型将被开发。这将提供新的科学见解,并为助听器,社交机器人和监控系统提供智能算法。该项目将为研究生和本科生提供研究机会,并为高中和大学生提供外展活动和在线学习资源,以提高公众对神经科学的认识。研究成果和模型将与学术界分享。本计画将以跨学科的方法,整合心理声学实验与单一单元电生理学,以了解听觉场景分析的中枢机制。本研究将探讨听觉系统如何定位一个目标声音在时间上嵌入在一个空间上分离的掩蔽。单单位录音将针对听觉皮层的尾侧区域,这是复杂声音分析的假定“何处”通路。我们假设皮层活动代表新旧声音,因此可以从整体混合物中减去“旧”掩蔽源的内部表示。这有助于更清晰地感知“新”目标元素,展示了听觉场景分析中的基本心理物理现象。为了验证这一假设,我们将分别和组合识别单个声源的神经信号。然后,我们将解释这些信号的感知数据的基础上获得的声音定位测试与多个移动和固定的声源。发现听觉场景分析的基本脑机制将为完善的心理物理学领域提供新的神经生理学见解,并为声源分离提供潜在的技术解决方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonas Braasch其他文献

A low cost, non-individualized surround sound system based upon head related transfer functions: an ergonomics study and prototype development.
基于头部相关传递函数的低成本、非个性化环绕声系统:人体工程学研究和原型开发。
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    R. H. So;N. M. Leung;Jonas Braasch;K. L. Leung
  • 通讯作者:
    K. L. Leung

Jonas Braasch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonas Braasch', 18)}}的其他基金

CHS: Small: TICE - Telematic Immersive Classroom Environments
CHS:小型:TICE - 远程信息处理沉浸式课堂环境
  • 批准号:
    1909229
  • 财政年份:
    2020
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Standard Grant
RI: Small: Binaural Sound Source Separation Robust to Listener Head Movements
RI:小:双耳声源分离对听众头部运动具有鲁棒性
  • 批准号:
    1320059
  • 财政年份:
    2013
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Standard Grant
MRI: Development of the Collaborative-Research Augmented Immersive Virtual Environment Laboratory (CRAIVE-Lab)
MRI:协作研究增强沉浸式虚拟环境实验室 (CRAIVE-Lab) 的开发
  • 批准号:
    1229391
  • 财政年份:
    2012
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: A Virtual eXchange to Support Networks of Creativity and Innovation Amongst Science, Engineering, Arts and Design (XSEAD)
合作研究:EAGER:支持科学、工程、艺术和设计之间的创造力和创新网络的虚拟交换 (XSEAD)
  • 批准号:
    1141480
  • 财政年份:
    2011
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Standard Grant
Major: CAIRA - A Creative Artificially-Intuitive and Reasoning Agent in the Context of Ensemble Music Improvisation
专业:CAIRA - 合奏音乐即兴创作背景下的创造性人工直觉和推理代理
  • 批准号:
    1002851
  • 财政年份:
    2010
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Standard Grant
Pilot: A Robust Distributed Intelligent System for Telematic Applications
试点:用于远程信息处理应用的强大分布式智能系统
  • 批准号:
    0757454
  • 财政年份:
    2008
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Standard Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2311468
  • 财政年份:
    2023
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了