CyberSEES: Type 1: Collaborative Research: Large-Scale, Integrated, and Robust Wind Farm Optimization Enabled by Coupled Analytic Gradients
CyberSEES:类型 1:协作研究:耦合分析梯度支持的大规模、集成和鲁棒的风电场优化
基本信息
- 批准号:1539388
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wind provides a renewable source of energy and is one of the most cost-effective sources for new energy installations. Today, wind turbines are designed for an isolated environment, as are their power regulation strategies. When turbines are assembled into a wind farm their wakes significantly interfere with other turbines resulting in energy underproduction of 10-20% relative to expectations. This underproduction is a major barrier to increased wind energy growth. This project hypothesizes that a significant increase in power production is possible through simultaneous design of wind turbine layouts, power-regulation strategies, and the turbines themselves, all in the presence of stochastic inputs.Simultaneous layout-control-turbine design is challenging, especially when considering uncertain inputs. Current research and industry practices use simulation models that are non-differentiable or do not provide gradients. As a result, most wind farm layout optimizations are limited to around 10-100 variables, rely on sequential design processes, and only include uncertainty in simple ways if at all. To enable design problems of larger size and complexity, wake and turbine models must be reimplemented with scalable optimization in mind, and new methods for uncertainty quantification must be developed. The investigators' recent work suggests that by developing wind turbine wake models that provide exact derivatives, wind farm layout can be done effectively with 100 to 1,000 times more variables than those solved by the industry today. This scalability will enable wind farm optimization that includes a large number of design variables, integrates multiple disciplines, and incorporates uncertainty in the design process. These proposed contributions seek to advance energy sustainability, scientific computing, and education. The wake and turbine models will be large-scale-optimization ready to allow designers to solve problems that were previously out of reach. The new uncertainty quantification methodologies will be widely applicable to multiple disciplines, particularly as more industries move towards integrated system design. Finally, a dedicated website will serve as a teaching tool to introduce optimization and uncertainty quantification concepts to a general audience through interactive wind farm design problems.Concurrently, the investigators will focus on foundational methods for scalable uncertainty quantification that can be used for both forward uncertainty propagation and statistical inversion. The emphasis on scalability is required to address challenges related to the number of random input variables, the number of output quantities of interest, and the efficiency of parallel implementations on extreme-scale computers. As an example, the research team is developing new methodologies for scalable uncertainty quantification that take advantage of the exact derivatives provided by these turbine and wake models. The research plan focuses on three main goals: 1) develop new wake models with exact gradients, 2) perform integrated layout-control-turbine optimization, and 3) develop scalable uncertainty quantification methods to demonstrate expected performance improvements on robust wind farm layout problems.
风能提供了一种可再生能源,是新能源装置最具成本效益的来源之一。今天,风力涡轮机是为孤立的环境而设计的,其功率调节策略也是如此。当涡轮机组装成风力发电场时,它们的尾流显著干扰其他涡轮机,导致相对于预期的10-20%的能量产量不足。这种生产不足是增加风能增长的主要障碍。该项目假设通过同时设计风力涡轮机布局、功率调节策略和涡轮机本身,可以显著增加发电量,所有这些都是在存在随机输入的情况下进行的。同时布局控制涡轮机设计是具有挑战性的,特别是在考虑不确定输入时。 当前的研究和行业实践使用不可微或不提供梯度的仿真模型。因此,大多数风电场布局优化仅限于约10-100个变量,依赖于顺序设计过程,并且仅以简单的方式包括不确定性。为了解决更大尺寸和更复杂的设计问题,尾流和涡轮机模型必须重新实施,并考虑到可扩展的优化,必须开发新的不确定性量化方法。研究人员最近的工作表明,通过开发提供精确导数的风力涡轮机尾流模型,可以有效地进行风电场布局,其变量比当今行业解决的变量多100到1,000倍。 这种可扩展性将使风电场优化,包括大量的设计变量,集成多个学科,并在设计过程中纳入不确定性。这些提议的贡献旨在促进能源可持续性、科学计算和教育。尾流和涡轮机模型将进行大规模优化,使设计人员能够解决以前无法解决的问题。 新的不确定性量化方法将广泛适用于多个学科,特别是随着越来越多的行业转向集成系统设计。 最后,一个专门的网站将作为一个教学工具,介绍优化和不确定性量化的概念,通过互动的风电场的设计问题,以一般观众。同时,调查人员将集中在可扩展的不确定性量化的基础方法,可用于前向不确定性传播和统计反演。需要强调可扩展性,以解决与随机输入变量的数量,感兴趣的输出量的数量,并在极端规模的计算机上的并行实现的效率相关的挑战。例如,研究小组正在开发新的方法,用于可扩展的不确定性量化,利用这些涡轮机和尾流模型提供的精确导数。该研究计划集中于三个主要目标:1)开发具有精确梯度的新尾流模型,2)执行集成布局-控制-涡轮机优化,以及3)开发可扩展的不确定性量化方法,以证明稳健风电场布局问题的预期性能改进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Alonso其他文献
1118-78 Primary angioplasty versus facilitated intervention (tenecteplase plus stenting) in patients with ST elevated acute myocardial infarction: Final results of the GRACIA-2 trial
- DOI:
10.1016/s0735-1097(04)91226-0 - 发表时间:
2004-03-03 - 期刊:
- 影响因子:
- 作者:
Francisco Fernandez-Aviles;Joaquin J Alonso;Alfonso Castro-Beiras;Javier Goicolea;Jesus Blanco;Juan Alonso;Juan Lopez-Mesa;Luis Diaz-Llera;Nicolas Vazquez;Rosa Hernandez;Armando Perez;Javier Moreu; The GRACIA-2 Investigators - 通讯作者:
The GRACIA-2 Investigators
Orthonormal Polynomial Bases for Airfoil Design
翼型设计的正交多项式基
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Dan Berkenstock;Juan Alonso;Laurent Lessard - 通讯作者:
Laurent Lessard
Volumetric deformability and water mass exchange of bentonite aggregates
- DOI:
10.1016/j.enggeo.2013.09.011 - 发表时间:
2013-11-08 - 期刊:
- 影响因子:
- 作者:
Vicente Navarro;Laura Asensio;Ángel Yustres;Xavier Pintado;Juan Alonso - 通讯作者:
Juan Alonso
Assessment of temperature effect on bentonite microstructure deformability
- DOI:
10.1016/j.clay.2021.106156 - 发表时间:
2021-09-01 - 期刊:
- 影响因子:
- 作者:
Vicente Navarro;Gema De la Morena;Virginia Cabrera;Juan Alonso;Laura Asensio - 通讯作者:
Laura Asensio
Lie algebras of curves and loop-bundles on surfaces
- DOI:
10.1007/s10711-023-00802-1 - 发表时间:
2023-05-11 - 期刊:
- 影响因子:0.500
- 作者:
Juan Alonso;Miguel Paternain;Javier Peraza;Michael Reisenberger - 通讯作者:
Michael Reisenberger
Juan Alonso的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
铋基邻近双金属位点Type B异质结光热催化合成氨机制研究
- 批准号:
- 批准年份:2024
- 资助金额:30.0 万元
- 项目类别:省市级项目
智能型Type-I光敏分子构效设计及其抗耐药性感染研究
- 批准号:22207024
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:青年科学基金项目
TypeⅠR-M系统在碳青霉烯耐药肺炎克雷伯菌流行中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
替加环素耐药基因 tet(A) type 1 变异体在碳青霉烯耐药肺炎克雷伯菌中的流行、进化和传播
- 批准号:LY22H200001
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向手性α-氨基酰胺药物的新型不对称Ugi-type 反应开发
- 批准号:LY22B020003
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
BMP9/BMP type I receptors 通过激活 PPARα保护心肌梗死的机制研究
- 批准号:LQ22H020003
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
C2H2-type锌指蛋白在香菇采后组织软化进程中的作用机制研究
- 批准号:32102053
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管阻断型Type-I光敏剂合成及其三阴性乳腺癌光诊疗
- 批准号:62120106002
- 批准年份:2021
- 资助金额:255 万元
- 项目类别:国际(地区)合作与交流项目
Chichibabin-type偶联反应在构建联氮杂芳烃中的应用
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
茶尺蠖Type-II环氧性信息素合成酶关键基因的鉴定及功能研究
- 批准号:LQ21C140001
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CyberSEES: Type 1: Collaborative Research: Sustainability-aware Management of Interdependent Power and Water Systems
CyberSEES:类型 1:协作研究:相互依赖的电力和水系统的可持续性意识管理
- 批准号:
1830746 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CyberSEES: Type 1: Collaborative Research: Sustainability-aware Management of Interdependent Power and Water Systems
CyberSEES:类型 1:协作研究:相互依赖的电力和水系统的可持续性意识管理
- 批准号:
1539462 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CyberSEES: Type 1: Collaborative Research: Sustainability-aware Management of Interdependent Power and Water Systems
CyberSEES:类型 1:协作研究:相互依赖的电力和水系统的可持续性意识管理
- 批准号:
1539611 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CyberSEES: Type 1: Collaborative Research: Sustainability-aware Management of Interdependent Power and Water Systems
CyberSEES:类型 1:协作研究:相互依赖的电力和水系统的可持续性意识管理
- 批准号:
1539593 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CyberSEES: Type 2: Collaborative Research: Real-time Ambient Noise Seismic Imaging for Subsurface Sustainability
CyberSEES:类型 2:协作研究:用于地下可持续性的实时环境噪声地震成像
- 批准号:
1663709 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CyberSEES: Type 2: Collaborative Research: Real-time Ambient Noise Seismic Imaging for Subsurface Sustainability
CyberSEES:类型 2:协作研究:用于地下可持续性的实时环境噪声地震成像
- 批准号:
1442635 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CyberSEES: Type 2: Collaborative Research: A Computational and Analytic Laboratory for Modeling and Predicting Marine Biodiversity and Indicators of Sustainable Ecosystems
CyberSEES:类型 2:协作研究:用于建模和预测海洋生物多样性和可持续生态系统指标的计算和分析实验室
- 批准号:
1539270 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CyberSEES: Type 2: Collaborative Research: A Computational and Analytic Laboratory for Modeling and Predicting Marine Biodiversity and Indicators of Sustainable Ecosystems
CyberSEES:类型 2:协作研究:用于建模和预测海洋生物多样性和可持续生态系统指标的计算和分析实验室
- 批准号:
1539291 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CyberSEES: Type 1: Collaborative Research: Infrastructure and Technology Supporting Citizen Science Data Usage and Distribution for Education and Sustainability
CyberSEES:类型 1:协作研究:支持公民科学数据使用和分发以促进教育和可持续发展的基础设施和技术
- 批准号:
1442668 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CyberSEES: Type 2: Collaborative Research: Real-time Ambient Noise Seismic Imaging for Subsurface Sustainability
CyberSEES:类型 2:协作研究:用于地下可持续性的实时环境噪声地震成像
- 批准号:
1442630 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant