Emphasis Year in Probability Theory

概率论重点年

基本信息

  • 批准号:
    1542289
  • 负责人:
  • 金额:
    $ 4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-12-01 至 2016-11-30
  • 项目状态:
    已结题

项目摘要

This award supports participation in a one-day workshop, a three-day conference, and a two-week summer school held at Northwestern University during the period January through August, 2016. The meetings center on the topic of probability theory and have the goals of training junior mathematicians in the field and stimulating new research. Probability theory is a major branch of modern mathematics. It aims at a rigorous mathematical investigation of collective behavior of random phenomena and is one of the most applicable branches of science. The one-day workshop, to be held in February 2016, will feature four talks on the topic of nodal sets of random functions. The three day conference, to be held in May 2016, will feature twelve talks by experts on the topics of percolation, spin glasses, and random media, three central topics in probability. The Summer School in Probability, to be held in July 2016, will include five introductory mini-courses on various topics within geometric analysis, aimed at graduate students and recent PhD recipients. Award funds will be used primarily for the travel costs of attendees who are graduate students or postdoctoral scholars at US institutions. The organizing committee will seek broad and diverse participation in these activities, and will especially encourage the participation of women mathematicians and members of other under-represented groups. More information on these events, which are part of an Emphasis Year in Probability at Northwestern, can be found on the website: http://www.math.northwestern.edu/~auffing/emphasis.html In the last decades, probability theory has emerged as a central and core branch of mathematics. Part of its importance relies on the connection with several branches of science, including: mathematical physics, chemistry, statistics, economics, and other areas of mathematics. The programmed activities share and promote these connections. Percolation originated from the study of fluid flow on a porous media, spin glasses are disordered magnets that exhibit metastability and large complexity, while random media is a common background to study polymer models. The research on nodal sets of random functions goes back to the work of M. Kac on zeroes of random polynomials and share deep connections with semi-classical analysis and topology. These activities and topics present an excellent opportunity to bring graduate students and postdoctoral scholars to the forefront of research in probability theory.
该奖项支持在2016年1月至8月期间在西北大学举办的为期一天的研讨会,为期三天的会议和为期两周的暑期学校。会议以概率论为主题,目的是培养该领域的初级数学家并促进新的研究。概率论是现代数学的一个重要分支。它旨在对随机现象的集体行为进行严格的数学研究,是最适用的科学分支之一。为期一天的研讨会将于2016年2月举行,将以随机函数的节点集为主题进行四场演讲。为期三天的会议将于2016年5月举行,届时将有专家就渗流、自旋玻璃和随机介质这三个概论的核心主题进行12场演讲。概率论暑期学校将于2016年7月举行,将包括五门关于几何分析中各种主题的入门迷你课程,针对研究生和最近的博士学位获得者。奖金将主要用于美国机构的研究生或博士后学者的旅费。组委会将寻求对这些活动的广泛和多样化的参与,并将特别鼓励女数学家和其他代表性不足的群体成员的参与。关于这些事件的更多信息,这些事件是西北大学概率论重点年的一部分,可以在网站上找到:http://www.math.northwestern.edu/~auffing/emphasis.html在过去的几十年里,概率论已经成为数学的一个核心分支。它的重要性部分依赖于与几个科学分支的联系,包括:数学物理、化学、统计学、经济学和其他数学领域。有计划的活动分享并促进了这些联系。渗流起源于对多孔介质上流体流动的研究,自旋玻璃是具有亚稳性和大复杂性的无序磁体,而随机介质是研究聚合物模型的共同背景。随机函数节点集的研究可以追溯到M. Kac关于随机多项式零点的工作,与半经典分析和拓扑学有着深刻的联系。这些活动和主题提供了一个极好的机会,将研究生和博士后学者带到概率论研究的前沿。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Antonio Auffinger其他文献

Limiting geodesics for first-passage percolation on subsets of $mathbb{Z}^{2}$
$mathbb{Z}^{2}$ 子集上第一通道渗滤的限制测地线
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Antonio Auffinger;M. Damron;Jack Hanson
  • 通讯作者:
    Jack Hanson
The Spherical p+s Spin Glass At Zero Temperature
零温下球形 p s 自旋玻璃
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Antonio Auffinger;Yuxing Zhou
  • 通讯作者:
    Yuxing Zhou
The number of saddles of the spherical $p$-spin model
球形$p$-spin模型的鞍数
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Antonio Auffinger;Julian Gold
  • 通讯作者:
    Julian Gold
The SK model is Full-step Replica Symmetry Breaking at zero temperature
SK模型是零温度下全步复制对称破缺
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Antonio Auffinger;Wei;Q. Zeng
  • 通讯作者:
    Q. Zeng
A simplified proof of the relation between scaling exponents in first-passage percolation
第一段渗透中缩放指数之间关系的简化证明
  • DOI:
    10.1214/13-aop854
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Antonio Auffinger;M. Damron
  • 通讯作者:
    M. Damron

Antonio Auffinger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Antonio Auffinger', 18)}}的其他基金

Spin Glasses and Other Models of Disordered Media
自旋玻璃和其他无序介质模型
  • 批准号:
    2154076
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
The 41st Stochastic Processes and Its Applications (SPA 2019)
第41届随机过程及其应用(SPA 2019)
  • 批准号:
    1906251
  • 财政年份:
    2019
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
CAREER: Complexity of Disordered Systems
职业:无序系统的复杂性
  • 批准号:
    1653552
  • 财政年份:
    2017
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Complexity of Disordered Systems
无序系统的复杂性
  • 批准号:
    1517864
  • 财政年份:
    2014
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Complexity of Disordered Systems
无序系统的复杂性
  • 批准号:
    1407554
  • 财政年份:
    2014
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant

相似海外基金

CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 4万
  • 项目类别:
    Studentship
HSI Pilot Project: Institutionalizing a Teaching and Learning Excellence Community of Practice focused on First-Year Student Success in STEM
HSI 试点项目:将卓越教学和学习实践社区制度化,重点关注一年级学生在 STEM 方面的成功
  • 批准号:
    2345247
  • 财政年份:
    2024
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Leveraging Social Psychology Interventions to Promote First Year STEM Persistence
HSI 实施和评估项目:利用社会心理学干预措施促进第一年 STEM 的坚持
  • 批准号:
    2345273
  • 财政年份:
    2024
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Participant Support for the Kahramanmaraş, Turkey, Earthquake Sequence One-year Anniversary Programming at the 2024 EERI Annual Meeting; Seattle, Washington; 9-12 April 2024
在 2024 年 EERI 年会上为土耳其卡赫拉曼马拉地震一周年纪念活动提供支持;
  • 批准号:
    2418579
  • 财政年份:
    2024
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Expanding Pathways for Preparing the Next Generation of Engineers: First-Year Engineering 2.0 (FYE2.0)
拓展培养下一代工程师的途径:一年级工程 2.0 (FYE2.0)
  • 批准号:
    2337003
  • 财政年份:
    2024
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Extracurricular Instrument Training Experience for Students at a Two-Year College
两年制大学学生课外乐器培训体验
  • 批准号:
    2323078
  • 财政年份:
    2024
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
What are the implications of health inequalities such as parental education and household income in BAME 11-16 year old's mental health in Wales
父母教育和家庭收入等健康不平等对威尔士 BAME 11-16 岁心理健康有何影响
  • 批准号:
    2875399
  • 财政年份:
    2024
  • 资助金额:
    $ 4万
  • 项目类别:
    Studentship
Conference: A Virtual Workshop for Two-Year College Geoscience Faculty to Develop National Science Foundation Grant Proposals
会议:两年制大学地球科学教师制定国家科学基金会拨款提案的虚拟研讨会
  • 批准号:
    2349758
  • 财政年份:
    2024
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Conference: Two-Year College Data Science Initiative (TYCDSI) Workshop
会议:两年大学数据科学计划 (TYCDSI) 研讨会
  • 批准号:
    2402290
  • 财政年份:
    2024
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Using Advanced Technology to Enhance Learning and Teaching in Science Labs at Two-Year Colleges
利用先进技术加强两年制学院科学实验室的学习和教学
  • 批准号:
    2329563
  • 财政年份:
    2024
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了