MATH:EAGER:Collaborative Research: SMILES (Student-Made Interactive Learning with Educational Songs) for Introductory Statistics
数学:EAGER:协作研究:用于统计入门的 SMILES(学生用教育歌曲进行互动学习)
基本信息
- 批准号:1544237
- 负责人:
- 金额:$ 8.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In our increasingly data-centric world, statistical reasoning--in particular, reasoning about data in the context of uncertainty--has become central to the skills our nation needs for students to develop, especially for their future careers in the workforce. An undergraduate student's first formal experience with statistical reasoning frequently occurs in classrooms dominated by lectures rather than active learning experiences. In addition, the classroom instructors often are relatively untrained in statistics. This is especially true at two-year colleges where adjunct instructors can find it difficult to take part in professional development opportunities, often perceive reform-based pedagogies as taking 'extra work' when they already have an unreasonable workload, perceive new resources as being difficult to integrate into their current mode of instruction, and recognize the frequent severe 'statistics anxiety' in their students. SMILES (Student-Made Interactive Learning with Educational Songs) for Introductory Statistics--a collaborative project from Pennsylvania State University - University Park, the University of Texas at El Paso, and Georgia Perimeter College--will develop and field-test an innovation in online learning in introductory statistics, where students create a song by filling in key words associated with a learning objective. These interactive songs will challenge students to make conceptual connections and construct examples or context, thereby fostering statistical literacy and reasoning skills. Through a reduction in statistics anxiety (a key impediment to student success) and an accompanying enhancement of student learning, the potential impact is striking.The underlying goal of the project is to develop resources that require little instructor time or expertise, but have a high impact on developing statistical literacy and reasoning and on reducing statistics anxiety. In connection with this, interactive songs will provide a novel learning resource that holds great potential for teaching literacy and reasoning skills in statistics and other STEM disciplines. The web-based, machine-run, and auto-graded characteristic of this resource will provide easy access to students anywhere anytime, and will address instructor hesitations regarding in-class use. For instructors, interactive songs will be readily adoptable regardless of pedagogy (e.g., as easily incorporated in a flipped class as in an online class, or a lecture/lab course), and will provide a simple bridge to the statistics education reform movement for groups like two-year college adjunct faculty members who might remain otherwise disconnected. Most importantly, these professional-quality interactive songs will be designed to engage students, lessen anxiety, and foster active learning, thereby leading to improved statistical reasoning skills. To enhance their value, the interactive songs developed by the SMILES project will involve a unique artist/scientist collaborative to create original high-quality musical resources. To evaluate their efficacy and assess the value of interactive songs in enhancing student learning and reducing student anxiety, the project team will conduct a randomized controlled field test involving twenty (20) college level introductory statistics instructors for which fifteen (15) will be from two-year colleges. Response variables will include student answers to multiple-choice assessment items and levels of anxiety as measured by a pre-Statistics Anxiety Measure (SAM) and post-SAM measurement. Since students from the two-year colleges consist predominately of African American and Hispanic student populations, the research findings of the project will expand knowledge of best practices for addressing the national need to broaden participation in science, technology, engineering, and mathematics (STEM) discipline areas.
在我们日益以数据为中心的世界中,统计推理--特别是在不确定性背景下关于数据的推理--已经成为我们国家需要学生发展的技能的核心,特别是他们未来在劳动力市场的职业生涯。本科生第一次正式使用统计推理的经历往往发生在以课堂为主的课堂上,而不是积极的学习经历。此外,课堂讲师往往相对缺乏统计方面的培训。在两年制大学中,情况尤其如此,在那里,兼职教师发现很难获得职业发展机会,经常认为以改革为基础的教学方法在他们已经有不合理的工作量的情况下还在接受“额外工作”,认为新资源很难融入当前的教学模式,并认识到他们的学生经常出现严重的“统计焦虑”。来自宾夕法尼亚州立大学、德克萨斯大学埃尔帕索分校和乔治亚周长学院的合作项目--《学生用教育歌曲进行互动学习》--将开发并实地测试在线学习中的一项创新,即学生通过填写与学习目标相关的关键词来创作一首歌。这些互动歌曲将挑战学生建立概念联系和构建例子或背景,从而培养统计素养和推理能力。通过减少统计焦虑(学生成功的一个关键障碍)和随之而来的学生学习的加强,潜在的影响是显著的。该项目的基本目标是开发不需要教师时间或专业知识的资源,但对培养统计知识和推理能力以及减少统计焦虑有很大影响。在这方面,互动歌曲将提供一种新的学习资源,在教授统计学和其他STEM学科的识字和推理技能方面具有巨大的潜力。此资源的基于Web、机器运行和自动评分的特点将使学生能够随时随地轻松访问,并将解决教师在课堂上使用时的犹豫。对于教师来说,无论采用何种教学方法,互动歌曲都很容易被采用(例如,与在线课程或讲座/实验室课程一样,轻松地融入翻转课堂),并将为像两年制大学兼职教员这样的群体提供一座通往统计学教育改革运动的简单桥梁,否则他们可能会保持联系。最重要的是,这些专业质量的互动歌曲将被设计成吸引学生,减轻焦虑,培养主动学习,从而提高统计推理技能。为了提升它们的价值,由微笑项目开发的互动歌曲将由一位独特的艺术家/科学家合作创建原创的高质量音乐资源。为了评估互动歌曲在促进学生学习和减少学生焦虑方面的有效性和价值,项目组将进行一项随机对照实地测试,对象为二十(20)名大学水平的统计学入门教师,其中十五(15)人将来自两年制大学。回答变量将包括学生对多项选择评估项目的回答,以及通过统计前焦虑测量(SAM)和SAM后测量来衡量的焦虑水平。由于两年制大学的学生主要由非裔美国人和西班牙裔学生组成,该项目的研究成果将扩大有关最佳实践的知识,以满足国家扩大对科学、技术、工程和数学(STEM)学科领域的参与的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lawrence Lesser其他文献
Lawrence Lesser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lawrence Lesser', 18)}}的其他基金
Collaborative Research: Project UPLIFT (Universal Portability of Learning Increased by Fun Teaching)
合作研究:UPLIFT 项目(通过有趣的教学增强学习的通用便携性)
- 批准号:
1140690 - 财政年份:2012
- 资助金额:
$ 8.94万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 8.94万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 8.94万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 8.94万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 8.94万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 8.94万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 8.94万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 8.94万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 8.94万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 8.94万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 8.94万 - 项目类别:
Standard Grant














{{item.name}}会员




