NRT-DESE LUCID: A project-focused cross-disciplinary graduate training program for data-enabled research in human and machine learning and teaching

NRT-DESE LUCID:一个以项目为中心的跨学科研究生培训计划,用于人类和机器学习与教学的数据支持研究

基本信息

  • 批准号:
    1545481
  • 负责人:
  • 金额:
    $ 299.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

NRT DESE: Learning, understanding, cognition, intelligence, and data science (LUCID)In modern life there are many situations requiring people to interact with computers, either so that they may learn from the machine or so that the machine may learn from them. The applications in education, industry, health, robotics, and national security hint at the enormous societal and economic benefits arising from research into the technologies that promote learning in both people and computers. Yet the potential has been difficult to realize because such research requires scientists with expertise in quite different fields of study. While computer scientists receive training in complex computational ideas and methods, they know little about how people learn and behave. This National Science Foundation Research Traineeship (NRT) award to the University of Wisconsin-Madison will prepare trainees with data-enabled science and engineering training to simultaneously understand computational theory and methods, the mechanisms that support human learning and behavior, and the ways these mechanisms behave in complex real-world situations. The traineeship anticipates equipping forty (40) doctoral students with the skills and expertise necessary to advance our understanding of human and machine learning and teaching, through a new training program that focuses on learning, understanding, cognition, intelligence, and data science.This project will train doctoral students from computer science, engineering, cognitive psychology, and education sciences, with the goal of promoting a common knowledge base that allows these scientists to work productively across traditional boundaries on both basic research questions and practical, real-world problems. The traineeship will include several graduate training innovations: (1) a project-focused "prof-and-peer" mentoring system where scientists work in cross-disciplinary teams to address a shared research problem, (2) close involvement of partners in industry, government, and non-profit sectors to develop research problems with real-world application, (3) an information outreach effort that trains scientists to communicate with the public, industry, and policy-makers through traditional and new media outlets, (4) a flexible development plan that allows each trainee to garner the cross-disciplinary expertise needed to advance a particular research focus, and (5) new mechanisms for recruiting and retaining under-represented groups in STEM research. This training will prepare US scientists to compete globally at the highest levels for positions in science, industry, and government, in a growth sector of the 21st century knowledge economy. The NSF Research Traineeship (NRT) Program is designed to encourage the development and implementation of bold, new, potentially transformative, and scalable models for STEM graduate education training. The Traineeship Track is dedicated to effective training of STEM graduate students in high priority interdisciplinary research areas, through the comprehensive traineeship model that is innovative, evidence-based, and aligned with changing workforce and research needs.This award is supported, in part, by the EHR Core Research (ECR) program, specifically the ECR Research in Disabilities Education (RDE) area of special interest. ECR emphasizes fundamental STEM education research that generates foundational knowledge in the field. Investments are made in critical areas that are essential, broad and enduring: STEM learning and STEM learning environments, broadening participation in STEM, and STEM workforce development.
NRT DESE:学习,理解,认知,智能和数据科学(LUCID)在现代生活中,有许多情况需要人们与计算机交互,以便他们可以向机器学习,或者机器可以向他们学习。在教育、工业、健康、机器人和国家安全方面的应用表明,对促进人和计算机学习的技术的研究产生了巨大的社会和经济效益。然而,这种潜力很难实现,因为这样的研究需要在完全不同的研究领域具有专业知识的科学家。虽然计算机科学家在复杂的计算思想和方法方面接受过培训,但他们对人类的学习和行为知之甚少。这项授予威斯康星大学麦迪逊分校的国家科学基金会研究培训(NRT)奖将为受训者提供数据支持的科学和工程培训,以同时理解计算理论和方法,支持人类学习和行为的机制,以及这些机制在复杂的现实世界中的行为方式。通过一个专注于学习、理解、认知、智能和数据科学的新培训项目,该培训计划预计将为40名博士生提供必要的技能和专业知识,以促进我们对人类和机器学习与教学的理解。该项目将培养来自计算机科学、工程学、认知心理学和教育科学的博士生,其目标是促进一个共同的知识库,使这些科学家能够跨越传统的界限,在基础研究问题和实际问题上富有成效地工作。实习将包括几项研究生培训创新:(1)以项目为中心的“教授与同行”指导体系,科学家在跨学科团队中合作解决共同的研究问题;(2)行业、政府和非营利部门的合作伙伴密切参与,开发具有现实应用的研究问题;(3)信息推广工作,培训科学家通过传统和新媒体渠道与公众、行业和政策制定者进行沟通。(4)灵活的发展计划,使每位学员都能获得推进特定研究重点所需的跨学科专业知识;(5)在STEM研究中招募和留住代表性不足群体的新机制。这种培训将使美国科学家在21世纪知识经济的增长领域中,为科学、工业和政府领域的最高水平的职位在全球竞争做好准备。NSF研究培训(NRT)计划旨在鼓励开发和实施大胆的、新的、具有潜在变革性和可扩展的STEM研究生教育培训模式。通过创新、循证、适应不断变化的劳动力和研究需求的综合培训模式,培训项目致力于在高优先级跨学科研究领域对STEM研究生进行有效培训。该奖项在一定程度上得到了EHR核心研究(ECR)项目的支持,特别是ECR残疾教育研究(RDE)领域的特殊利益。ECR强调在STEM领域产生基础知识的基础教育研究。投资在至关重要、广泛和持久的关键领域:STEM学习和STEM学习环境,扩大STEM参与,以及STEM劳动力发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tim Rogers其他文献

Digital mental health and peer support: Building a Theory of Change informed by stakeholders’ perspectives
数字心理健康和同伴支持:根据利益相关者的观点建立变革理论
  • DOI:
    10.1371/journal.pdig.0000522
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meigan Thomson;Gregor Henderson;Tim Rogers;Benjamin Locke;John Vines;A. MacBeth
  • 通讯作者:
    A. MacBeth
Moving concussion care to the next level: The emergence and role of concussion clinics in the UK.
将脑震荡护理提升到一个新的水平:英国脑震荡诊所的出现和作用。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Ahmed;M. Loosemore;Kathy Hornby;B. Kumar;R. Sylvester;H. Makalanda;Tim Rogers;D. Edwards;A. de Medici
  • 通讯作者:
    A. de Medici
Critical realism and learning analytics research: epistemological implications of an ontological foundation
批判现实主义和学习分析研究:本体论基础的认识论含义
Leap into... collaborative learning
跳入...协作学习
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christine Ingleton;Loene A. Doube;Tim Rogers
  • 通讯作者:
    Tim Rogers
Speed and Shape of Population Fronts with Density-Dependent Diffusion
  • DOI:
    10.1007/s11538-024-01381-2
  • 发表时间:
    2024-11-09
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Beth M. Stokes;Tim Rogers;Richard James
  • 通讯作者:
    Richard James

Tim Rogers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tim Rogers', 18)}}的其他基金

NCS-FO: Uncovering the cognitive and neural fingerprints that make each of us unique
NCS-FO:揭示使我们每个人独一无二的认知和神经指纹
  • 批准号:
    2219903
  • 财政年份:
    2022
  • 资助金额:
    $ 299.98万
  • 项目类别:
    Standard Grant
Discrete noise in stochastic active flows
随机主动流中的离散噪声
  • 批准号:
    EP/V048228/1
  • 财政年份:
    2021
  • 资助金额:
    $ 299.98万
  • 项目类别:
    Research Grant
Promoting Expertise in Computational Cognitive Science
提升计算认知科学的专业知识
  • 批准号:
    1040683
  • 财政年份:
    2010
  • 资助金额:
    $ 299.98万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: NRT-DESE: Interdisciplinary Research Traineeships in Data-Enabled Science and Engineering of Atomic Structure
合作研究:NRT-DESE:数据支持的原子结构科学与工程跨学科研究实习
  • 批准号:
    1633094
  • 财政年份:
    2016
  • 资助金额:
    $ 299.98万
  • 项目类别:
    Standard Grant
NRT-DESE: Interdisciplinary Graduate Training to Understand and Inform Decision Processes Using Advanced Spatial Data Analysis and Visualization
NRT-DESE:使用高级空间数据分析和可视化来理解和指导决策过程的跨学科研究生培训
  • 批准号:
    1633299
  • 财政年份:
    2016
  • 资助金额:
    $ 299.98万
  • 项目类别:
    Standard Grant
NRT-DESE: Network Biology: From Data to Information to Insights
NRT-DESE:网络生物学:从数据到信息到见解
  • 批准号:
    1632976
  • 财政年份:
    2016
  • 资助金额:
    $ 299.98万
  • 项目类别:
    Standard Grant
NRT-DESE: Data Intensive Research Enabling Clean Technologies (DIRECT)
NRT-DESE:数据密集型研究支持清洁技术(直接)
  • 批准号:
    1633216
  • 财政年份:
    2016
  • 资助金额:
    $ 299.98万
  • 项目类别:
    Standard Grant
NRT-DESE: Team Science for Integrative Graduate Training in Data Science and Physical Science
NRT-DESE:数据科学和物理科学研究生综合培训的团队科学
  • 批准号:
    1633631
  • 财政年份:
    2016
  • 资助金额:
    $ 299.98万
  • 项目类别:
    Standard Grant
NRT-DESE: NRT in Integrated Computational Entomology (NICE)
NRT-DESE:综合计算昆虫学 (NICE) 中的 NRT
  • 批准号:
    1631776
  • 财政年份:
    2016
  • 资助金额:
    $ 299.98万
  • 项目类别:
    Standard Grant
NRT-DESE: Preparing Resilient and Operationally Adaptive Communities through an Interdisciplinary, Venture-based Education (PROACTIVE)
NRT-DESE:通过跨学科、基于风险的教育(主动)打造有弹性和适应性强的社区
  • 批准号:
    1633608
  • 财政年份:
    2016
  • 资助金额:
    $ 299.98万
  • 项目类别:
    Standard Grant
NRT-DESE Intelligent Adaptive Systems: Training computational and data-analytic skills for academia and industry
NRT-DESE 智能自适应系统:为学术界和工业界培训计算和数据分析技能
  • 批准号:
    1633722
  • 财政年份:
    2016
  • 资助金额:
    $ 299.98万
  • 项目类别:
    Standard Grant
Collaborative Research: NRT-DESE: Interdisciplinary Research Traineeships in Data-Enabled Science and Engineering of Atomic Structure
合作研究:NRT-DESE:数据支持的原子结构科学与工程跨学科研究实习
  • 批准号:
    1633587
  • 财政年份:
    2016
  • 资助金额:
    $ 299.98万
  • 项目类别:
    Standard Grant
NRT-DESE: Graduate Training in Data-Enabled Research into Human Behavior and its Cognitive and Neural Mechanisms
NRT-DESE:人类行为及其认知和神经机制的数据支持研究研究生培训
  • 批准号:
    1449828
  • 财政年份:
    2015
  • 资助金额:
    $ 299.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了