Collaborative Research: NRT-DESE: Interdisciplinary Research Traineeships in Data-Enabled Science and Engineering of Atomic Structure

合作研究:NRT-DESE:数据支持的原子结构科学与工程跨学科研究实习

基本信息

  • 批准号:
    1633587
  • 负责人:
  • 金额:
    $ 255.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

In many important natural, synthetic and engineered materials, functionality and properties emerge at or below the nanoscale; however, quantifying atomic structure (i.e., local chemistry, bonding, atomic positions, spatial correlations and topology) in three-dimensions, through time and varying length scales, remains a challenge. This National Science Foundation Research Traineeship (NRT) award to North Carolina State University and North Carolina Central University will develop a new educational paradigm for Data-Enabled Science and Engineering of Atomic Structure (SEAS) to address the demand for a new generation of interdisciplinary, data-driven scientists who can apply advanced statistical methods to atomic-structure data generated from cutting-edge analytical and computational experiments. The research pioneered by these students will ultimately lead to a greater understanding of how the atomic structures of materials govern their physical properties (e.g. electronic, optical, mechanical). The project anticipates training at least forty (40) MS and PhD students over the five-year grant, including twenty (20) funded trainees, from materials science, physics, statistics and applied mathematics. With large investments in our national scientific infrastructure at both Federal laboratories and universities, a new and evolving generation of atomically sensitive instruments has opened new opportunities for next-generation science. Parallel to these developments in measurement sciences, great strides have been made in computational materials science, which are providing unprecedented opportunities for predictive materials design. The SEAS effort will develop a new graduate-training model, responding to the emergence and rapid growth of this critical interdisciplinary research at the interface of materials and data science and contributing directly and indirectly to the national Materials Genome Initiative (MGI), a multi-agency initiative spearheaded by the White House that advances the U.S. economy by enabling faster deployment of new materials. The SEAS traineeship program will immerse graduate students in a unique interdisciplinary curricular and research environment in which the trainees will be team-mentored by a diverse group of faculty and external industry and national laboratory scientists. The students will design professional development portfolios that will include laboratory rotations, interdisciplinary research group activities, internships, research training modules, communication training, and leadership-training activities. SEAS will promote and enhance diversity within the traineeship and larger professional community, and an integral part of the traineeship will be a bridge-to-the-PhD program across the partnering institutions aimed at better preparing underrepresented students to succeed in a research-intensive PhD program.The NSF Research Traineeship (NRT) Program is designed to encourage the development and implementation of bold, new potentially transformative models for STEM graduate education training. The Traineeship Track is dedicated to effective training of STEM graduate students in high priority interdisciplinary research areas, through the comprehensive traineeship model that is innovative, evidence-based, and aligned with changing workforce and research needs.
在许多重要的天然、合成和工程材料中,功能和性质出现在纳米级或纳米级以下;然而,量化原子结构(即,局部化学、键合、原子位置、空间相关性和拓扑学)在三维空间中通过时间和不同长度尺度的变化仍然是一个挑战。这项授予北卡罗来纳州州立大学和北卡罗来纳州中央大学的国家科学基金会研究培训计划(NRT)将为原子结构的数据科学与工程(SEAS)开发一种新的教育范式,以满足对新一代跨学科,数据驱动的科学家的需求,他们可以将先进的统计方法应用于从尖端分析和计算实验中产生的原子结构数据。这些学生开创的研究最终将导致对材料的原子结构如何管理其物理特性(例如电子,光学,机械)的更深入的了解。该项目预计在五年的赠款中培训至少四十(40)名硕士和博士生,其中包括二十(20)名受资助的学员,来自材料科学,物理学,统计学和应用数学。随着对我们在联邦实验室和大学的国家科学基础设施的大量投资,新一代和不断发展的原子敏感仪器为下一代科学开辟了新的机会。与测量科学的这些发展相平行,计算材料科学也取得了长足的进步,这为预测性材料设计提供了前所未有的机会。SEAS的努力将开发一种新的研究生培养模式,以应对材料和数据科学界面上这一关键跨学科研究的出现和快速增长,并直接和间接地为国家材料基因组计划(MGI)做出贡献,这是一项由白宫牵头的多机构计划,通过更快地部署新材料来推动美国经济。该海实习计划将沉浸在一个独特的跨学科课程和研究环境中的研究生,其中学员将由教师和外部行业和国家实验室科学家的多元化群体的团队指导。学生将设计专业发展组合,其中包括实验室轮换,跨学科研究小组活动,实习,研究培训模块,沟通培训和领导力培训活动。SEAS将促进和加强实习和更大的专业社区内的多样性,实习的一个组成部分将是跨合作机构的桥梁博士课程,旨在更好地准备代表性不足的学生在研究密集型博士课程中取得成功。NSF研究实习(NRT)计划旨在鼓励开发和实施大胆,为STEM研究生教育培训提供新的潜在变革模式。该培训轨道致力于在高优先级的跨学科研究领域的STEM研究生的有效培训,通过全面的培训模式,是创新的,以证据为基础,并与不断变化的劳动力和研究需求保持一致。

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Accounting for Location Measurement Error in Imaging Data With Application to Atomic Resolution Images of Crystalline Materials
  • DOI:
    10.1080/00401706.2021.1905070
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    M. J. Miller;M. Cabral;E. Dickey;J. Lebeau;B. Reich
  • 通讯作者:
    M. J. Miller;M. Cabral;E. Dickey;J. Lebeau;B. Reich
Active subspace analysis and uncertainty quantification for a polydomain ferroelectric phase-field model
多域铁电相场模型的主动子空间分析和不确定性量化
Soft Matter Informatics: Current Progress and Challenges
  • DOI:
    10.1002/adts.201800129
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    James S. Peerless;Nina J. B. Milliken;Thomas J. Oweida;Matthew D. Manning;Yaroslava G. Yingling
  • 通讯作者:
    James S. Peerless;Nina J. B. Milliken;Thomas J. Oweida;Matthew D. Manning;Yaroslava G. Yingling
A deep convolutional neural network to analyze position averaged convergent beam electron diffraction patterns
  • DOI:
    10.1016/j.ultramic.2018.03.004
  • 发表时间:
    2018-05-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Xu, W.;LeBeau, J. M.
  • 通讯作者:
    LeBeau, J. M.
Analysis of a multi-axial quantum informed ferroelectric continuum model: Part 1—uncertainty quantification
多轴量子信息铁电连续体模型分析:第 1 部分 — 不确定性量化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Reich其他文献

In silico dentistry(Three-dimensional simulation of orthodontic surgery using a multimodal image fusion technique)
计算机牙科(使用多模态图像融合技术进行正畸手术的三维模拟)
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    林一夫;Brian Reich;佐藤陽美;溝口到;Kazuo Hayashi;Itaru Mizoguchi
  • 通讯作者:
    Itaru Mizoguchi
顎運動解析における新しい統計的予測モデルの開発
开发用于下颌运动分析的新统计预测模型
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    林一夫;Brian Reich;佐藤陽美;溝口到
  • 通讯作者:
    溝口到
In silico dentistry(Mandibular helical axis during opening and closing movement)
计算机牙科(打开和关闭运动期间的下颌螺旋轴)
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    林一夫;Brian Reich;佐藤陽美;溝口到;Kazuo Hayashi
  • 通讯作者:
    Kazuo Hayashi
Respiratory and allergic outcomes among farmworkers exposed to pesticides in Costa Rica
哥斯达黎加接触农药的农场工人的呼吸系统和过敏结果
  • DOI:
    10.1016/j.scitotenv.2024.176776
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    María G. Rodríguez-Zamora;Samuel Fuhrimann;Mirko S. Winkler;María José Rosa;Brian Reich;Christian Lindh;Ana M. Mora
  • 通讯作者:
    Ana M. Mora

Brian Reich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Reich', 18)}}的其他基金

Projecting Flood Frequency Curves Under a Changing Climate Using Spatial Extreme Value Analysis
使用空间极值分析预测气候变化下的洪水频率曲线
  • 批准号:
    2152887
  • 财政年份:
    2022
  • 资助金额:
    $ 255.56万
  • 项目类别:
    Continuing Grant
Collaborative Research: Data Driven Discovery of Singlet Fission Materials
合作研究:数据驱动的单线态裂变材料的发现
  • 批准号:
    2022254
  • 财政年份:
    2021
  • 资助金额:
    $ 255.56万
  • 项目类别:
    Standard Grant
EAGER: MATDAT18 Type-1: Collaborative Research: Data Driven Discovery of Singlet Fission Materials
EAGER:MATDAT18 Type-1:协作研究:数据驱动的单线态裂变材料发现
  • 批准号:
    1844492
  • 财政年份:
    2018
  • 资助金额:
    $ 255.56万
  • 项目类别:
    Standard Grant
MATDAT18: Materials and Data Science Hackathon
MATDAT18:材料和数据科学黑客马拉松
  • 批准号:
    1748198
  • 财政年份:
    2017
  • 资助金额:
    $ 255.56万
  • 项目类别:
    Standard Grant
CSUMS: NC State University Computation for Undergraduates in Statistics Program (NCSU CUSP)
CSUMS:北卡罗来纳州立大学统计本科生计算课程 (NCSU CUSP)
  • 批准号:
    0703392
  • 财政年份:
    2007
  • 资助金额:
    $ 255.56万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NRT-QL: A Program for Training a Quantum Workforce
合作研究:NRT-QL:量子劳动力培训计划
  • 批准号:
    2125899
  • 财政年份:
    2021
  • 资助金额:
    $ 255.56万
  • 项目类别:
    Standard Grant
Collaborative Research: NRT-QL: A Program for Training a Quantum Workforce
合作研究:NRT-QL:量子劳动力培训计划
  • 批准号:
    2125906
  • 财政年份:
    2021
  • 资助金额:
    $ 255.56万
  • 项目类别:
    Standard Grant
Collaborative Research: NRT: Cyber-Physical-Social System for Understanding and Thwarting the Illicit Economy
合作研究:NRT:理解和阻止非法经济的网络物理社会系统
  • 批准号:
    1828302
  • 财政年份:
    2018
  • 资助金额:
    $ 255.56万
  • 项目类别:
    Standard Grant
Collaborative Research: NRT: Cyber-Physical-Social System for Understanding and Thwarting the Illicit Economy
合作研究:NRT:理解和阻止非法经济的网络物理社会系统
  • 批准号:
    1828462
  • 财政年份:
    2018
  • 资助金额:
    $ 255.56万
  • 项目类别:
    Standard Grant
Collaborative Research: NRT: Cyber-Physical-Social System for Understanding & Thwarting the Illicit Economy
合作研究:NRT:网络物理社会理解系统
  • 批准号:
    1828288
  • 财政年份:
    2018
  • 资助金额:
    $ 255.56万
  • 项目类别:
    Standard Grant
Collaborative Research: NRT: Cyber-Physical-Social System for Understanding and Thwarting the Illicit Economy
合作研究:NRT:理解和阻止非法经济的网络物理社会系统
  • 批准号:
    1828492
  • 财政年份:
    2018
  • 资助金额:
    $ 255.56万
  • 项目类别:
    Standard Grant
Collaborative Research: NRT-IGE: Employing Model-Based Reasoning in Environmental Science (EMBeRS)
合作研究:NRT-IGE:在环境科学中采用基于模型的推理 (EMBeRS)
  • 批准号:
    1807086
  • 财政年份:
    2018
  • 资助金额:
    $ 255.56万
  • 项目类别:
    Standard Grant
Collaborative Research: NRT-IGE: The NAVIGATE Project: A Case-Study Approach to Overcoming Barriers to Advancement for Women in STEM
合作研究:NRT-IGE:NAVIGATE 项目:克服女性在 STEM 领域进步障碍的案例研究方法
  • 批准号:
    1735143
  • 财政年份:
    2017
  • 资助金额:
    $ 255.56万
  • 项目类别:
    Standard Grant
Collaborative Research: NRT-IGE: The NAVIGATE Project: A Case-Study Approach to Overcoming Barriers to Advancement for Women in STEM
合作研究:NRT-IGE:NAVIGATE 项目:克服女性在 STEM 领域进步障碍的案例研究方法
  • 批准号:
    1735218
  • 财政年份:
    2017
  • 资助金额:
    $ 255.56万
  • 项目类别:
    Standard Grant
Collaborative Research: NRT-INFEWS: Sustainable Food, Energy, and Water Systems (SFEWS)
合作研究:NRT-INFEWS:可持续食品、能源和水系统 (SFEWS)
  • 批准号:
    1735235
  • 财政年份:
    2017
  • 资助金额:
    $ 255.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了