BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications

BIGDATA:协作研究:F:数据驱动应用程序的整体优化

基本信息

  • 批准号:
    1546083
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-10-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

We interact with online shopping and banking websites on a daily basis. Many of these websites are powered by data-driven applications. Such application often consists of two parts: an application hosted on an application server, and a database management system (DBMS) hosted on a separate server from the application server that maintains persistent data. Unfortunately, many data-driven applications suffer from performance problems, such as taking a long time to load a page or inability to scale up to serve large number of clients simultaneously. The state of the art in discovering and fixing performance problems in data-driven applications is to examine the two parts of the application separately, and doing so misses many opportunities in discovering and fixing such problems. Unlike prior approaches, in this project we will treat the DBMS and the application in tandem. In particular, we will devise new techniques and tools to help identify performance problems, understand the cause of such problems, and fix them automatically. This project will open up new opportunities in cross-layer program compilation and optimization, with the practical goal of improving the performance of data-driven applications that will have a significant impact in many aspects of our daily lives. The findings from this project will be incorporated into undergraduate and graduate software engineering, introduction to data management, and compiler classes to be offered at the University of Chicago and the University of Washington. The outreach activities of this project will include engaging and advising students through special programs geared toward under-represented groups such as the Distributed Research Experiences for Undergraduates (DREU) organized by CRA-W (Computing Research Association -- Women) and Diversity Workshops organized by CRA-W.Specifically, the proposed research consists of three thrusts: (1) a new cross-layer program analysis framework that produces an end-to-end profile of data-driven applications by understanding the application code, the queries that the application sends to the DBMS, and how the DBMS processes such queries; (2) a program analysis and testing framework that identify performance problems in data-driven applications by leveraging the end-to-end profile created from (1); and (3) new means to optimize data-driven applications by transforming both the application code and the queries that are issued. These three thrusts will work together to improve the performance of data-driven applications and help programmers detect performance problems during development. Software developed by this project, benchmarks used for evaluation, and performance comparison with existing techniques will be released to public domain through the project website. Further information will be available at the project website (https://people.eecs.berkeley.edu/~akcheung/coopt.html).
我们每天与在线购物和银行网站互动。其中许多网站都是由数据驱动的应用程序提供支持。此类应用程序通常由两部分组成:托管在应用程序服务器上的应用程序和托管在与应用程序服务器不同的服务器上的数据库管理系统 (DBMS),该系统维护持久数据。不幸的是,许多数据驱动的应用程序都存在性能问题,例如加载页面需要很长时间或无法扩展以同时为大量客户端提供服务。发现和修复数据驱动应用程序中的性能问题的现有技术是分别检查应用程序的两个部分,这样做会错过发现和修复此类问题的许多机会。与以前的方法不同,在这个项目中,我们将同时处理 DBMS 和应用程序。特别是,我们将设计新的技术和工具来帮助识别性能问题、了解此类问题的原因并自动修复它们。该项目将为跨层程序编译和优化开辟新的机会,其实际目标是提高数据驱动应用程序的性能,这将对我们日常生活的许多方面产生重大影响。该项目的研究结果将被纳入芝加哥大学和华盛顿大学本科生和研究生的软件工程、数据管理概论以及编译器课程中。该项目的外展活动将包括通过针对代表性不足群体的特殊计划吸引学生并为他们提供建议,例如由 CRA-W(计算研究协会 - 女性)组织的本科生分布式研究经验 (DREU) 和 CRA-W 组织的多样性研讨会。 具体而言,拟议的研究包括三个主旨:(1) 一个新的跨层程序分析框架,该框架产生数据驱动的端到端概况 通过了解应用程序代码、应用程序发送到 DBMS 的查询以及 DBMS 如何处理此类查询来应用程序; (2) 程序分析和测试框架,通过利用 (1) 创建的端到端配置文件来识别数据驱动应用程序中的性能问题; (3) 通过转换应用程序代码和发出的查询来优化数据驱动应用程序的新方法。这三个推动力将共同提高数据驱动应用程序的性能,并帮助程序员在开发过程中检测性能问题。该项目开发的软件、用于评估的基准以及与现有技术的性能比较将通过项目网站发布到公共领域。更多信息将在项目网站 (https://people.eecs.berkeley.edu/~akcheung/coopt.html) 上提供。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How not to Structure Your Database-Backed Web Applications: A Study of Performance Bugs in the Wild
PowerStation: automatically detecting and fixing inefficiencies of database-backed web applications in IDE
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alvin Cheung其他文献

Code Transpilation for Hardware Accelerators
硬件加速器的代码转换
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuto Nishida;Sahil Bhatia;Shadaj Laddad;Hasan Genç;Y. Shao;Alvin Cheung
  • 通讯作者:
    Alvin Cheung
Visualization by example
可视化示例
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chenglong Wang;Yu Feng;Rastislav Bodík;Alvin Cheung;Işıl Dillig
  • 通讯作者:
    Işıl Dillig
Speeding up symbolic reasoning for relational queries
加速关系查询的符号推理
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chenglong Wang;Alvin Cheung;Rastislav Bodík
  • 通讯作者:
    Rastislav Bodík
Packet Transactions: A Programming Model for Data-Plane Algorithms at Hardware Speed
数据包事务:硬件速度下数据平面算法的编程模型
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anirudh Sivaraman;M. Budiu;Alvin Cheung;Changhoon Kim;Steve Licking;G. Varghese;H. Balakrishnan;Mohammad Alizadeh;N. McKeown
  • 通讯作者:
    N. McKeown
Verified lifting of stencil computations
验证了模板计算的提升

Alvin Cheung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alvin Cheung', 18)}}的其他基金

III: Medium: Collaborative Research: Reasoning about Optimizers for Data-Intensive Systems
III:媒介:协作研究:数据密集型系统优化器的推理
  • 批准号:
    1955488
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Generating Application-Specific Database Management Systems
职业:生成特定于应用程序的数据库管理系统
  • 批准号:
    2027575
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Generating Application-Specific Database Management Systems
职业:生成特定于应用程序的数据库管理系统
  • 批准号:
    1651489
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
NeTS: Medium: Collaborative Research: Language and Hardware Primitives for Programming the Data Plane in High Speed Networks
NeTS:媒介:协作研究:高速网络中数据平面编程的语言和硬件原语
  • 批准号:
    1563788
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
  • 批准号:
    1934319
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838222
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838248
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了