BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining

BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架

基本信息

  • 批准号:
    2348159
  • 负责人:
  • 金额:
    $ 78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Recent advances in multimodal brain imaging and high throughput genotyping and sequencing techniques provide exciting new opportunities to ultimately improve our understanding of brain structure and neural dynamics, their genetic architecture, and their influences on cognition and behavior. However, data privacy and security issues have inhibited data sharing across institutes. Emerging multi-site collaborative data analysis can address these issues and facilitate data and computing resource sharing. In collaborative data analysis, the participating institutes keep their own data, which are analyzed and computed locally, and only share the computed results by communicating with a server. The server communicates with all institutes and updates the local models such that the trained machine learning models indirectly use all data and are shared with all institutes. Although some distributed/parallel computation techniques were recently proposed to address big data mining problems, most of them are synchronous models. Asynchronous distributed learning methods are much more efficient, because they allow the server to update the model with information from only one worker node without waiting for slow worker nodes in each round. However, the convergence analysis for the asynchronous distributed algorithms is much more difficult due to the inconsistent variables update across nodes. Thus, it is challenging to design efficient distributed machine learning algorithms for collaborative big data analysis. The research objective of this project is to address the computational challenges in the emerging multi-site collaborative data mining for brain big data. This project seeks to harness the opportunities of designing new efficient asynchronous distributed machine learning algorithms with rigorous theoretical foundations for multi-site collaborative brain big data mining, creating large-scale computational strategies and effective software tools to reveal sophisticated relationships among heterogeneous brain data. This project designs the asynchronous distributed machine learning and principled big data mining models to conduct the comprehensive study of brain imaging genomics and connectomics. Specifically, the principal investigators investigate: 1) collaborative genotype and phenotype association study using new asynchronous doubly stochastic proximal gradient algorithms; 2) communication-efficient multi-site collaborative data integration models to integrate imaging genomics data for predicting outcomes of interest; 3) collaborative deep learning algorithm speedup by the asynchronous distributed algorithms with applications in temporal cognitive change prediction; and 4) new graph convolutional deep learning models for brain network mining. It is innovative to integrate new distributed machine learning and data-intensive computing with brain imaging genomics and connectomics that hold great promise for a systems biology of the brain. The developed methods and tools impact other neuroimaging, genomics, and neuroscience research, and enable investigators working on brain science to effectively test their scientific hypotheses. This project will also facilitate the development of novel educational tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多模式脑成像和高通量基因分型和测序技术的最新进展为最终提高了我们对大脑结构和神经动态的理解,遗传结构以及它们对认知和行为的影响提供了令人兴奋的新机会。但是,数据隐私和安全问题已抑制了整个研究所的数据共享。新兴的多站点协作数据分析可以解决这些问题,并促进数据和计算资源共享。在协作数据分析中,参与的机构保留了自己的数据,这些数据将在本地进行分析和计算,仅通过与服务器进行通信分享计算的结果。服务器与所有机构进行通信,并更新本地模型,以便间接使用训练有素的机器学习模型,并与所有机构共享。尽管最近提出了一些分布式/并行计算技术来解决大数据挖掘问题,但其中大多数是同步模型。异步分布式学习方法效率要高得多,因为它们允许服务器仅在每个回合中等待一个工作的慢速工作节点的信息来更新模型。但是,由于跨节点的变量不一致,因此异步分布式算法的收敛分析要困难得多。因此,设计有效的分布式机器学习算法以进行协作大数据分析是一项挑战。该项目的研究目标是解决针对大脑大数据的新兴多站点协作数据挖掘的计算挑战。该项目旨在利用设计新高效的异步分布式机器学习算法的机会,并具有严格的理论基础,用于多站点协作大脑大数据挖掘,创建大规模的计算策略和有效的软件工具,以揭示异质大脑数据之间的复杂关系。该项目设计了异步分布式机器学习和原则上的大数据挖掘模型,以对脑成像基因组学和连接组学进行全面研究。具体而言,首席研究人员研究:1)使用新的异步双同步随机近端梯度算法进行协作基因型和表型关联研究; 2)沟通高效的多站点协作数据集成模型,以整合成像基因组学数据以预测感兴趣的结果; 3)与时间认知变化预测中应用的异步分布式算法的协作深度学习算法加速; 4)用于大脑网络挖掘的新图形卷积深度学习模型。将新的分布式机器学习和数据密集型计算与脑成像基因组学和连接组学相结合,这对大脑的系统生物学充满希望是创新的。开发的方法和工具会影响其他神经影像学,基因组学和神经科学研究,并使研究脑科学的研究人员能够有效地检验其科学假设。该项目还将促进开发新颖的教育工具。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评论标准来评估值得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heng Huang其他文献

Perianesthesia Care of the Oncologic Patients Undergoing Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy: A Retrospective Study.
接受热腹腔化疗肿瘤细胞减灭术的肿瘤患者的围麻醉护理:一项回顾性研究。
Experimental study on liquid immersion preheating of lithium-ion batteries under low temperature environment
低温环境下锂离子电池液浸预热实验研究
  • DOI:
    10.1016/j.csite.2024.104759
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Jiakang Bao;Zhi;Wei;Lei Wei;Jizu Lyu;Yang Li;Heng Huang;Yubai Li;Yongchen Song
  • 通讯作者:
    Yongchen Song
Research on Virtual Enterprise Workflow Modeling and Management System Implementation
虚拟企业工作流建模及管理系统实现研究
Computational Issues in Biomedical Nanometrics and Nano-Materials
生物医学纳米计量学和纳米材料的计算问题
  • DOI:
    10.4028/www.scientific.net/jnanor.1.50
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Heng Huang;Li Shen;J. Ford;Yu Hang Wang;Yu Rong Xu
  • 通讯作者:
    Yu Rong Xu
Functional analysis of cardiac MR images using SPHARM modeling
使用 SPHARM 建模对心脏 MR 图像进行功能分析
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heng Huang;Li Shen;J. Ford;F. Makedon;Rong Zhang;Ling Gao;J. Pearlman
  • 通讯作者:
    J. Pearlman

Heng Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heng Huang', 18)}}的其他基金

Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2347617
  • 财政年份:
    2023
  • 资助金额:
    $ 78万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 78万
  • 项目类别:
    Continuing Grant
A New Machine Learning Framework for Single-Cell Multi-Omics Bioinformatics
单细胞多组学生物信息学的新机器学习框架
  • 批准号:
    2405416
  • 财政年份:
    2023
  • 资助金额:
    $ 78万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 78万
  • 项目类别:
    Standard Grant
SCH: INT: New Machine Learning Framework to Conduct Anesthesia Risk Stratification and Decision Support for Precision Health
SCH:INT:用于进行麻醉风险分层和精准健康决策支持的新机器学习框架
  • 批准号:
    2347604
  • 财政年份:
    2023
  • 资助金额:
    $ 78万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2348306
  • 财政年份:
    2023
  • 资助金额:
    $ 78万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2213701
  • 财政年份:
    2022
  • 资助金额:
    $ 78万
  • 项目类别:
    Standard Grant
A New Machine Learning Framework for Single-Cell Multi-Omics Bioinformatics
单细胞多组学生物信息学的新机器学习框架
  • 批准号:
    2225775
  • 财政年份:
    2022
  • 资助金额:
    $ 78万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2217003
  • 财政年份:
    2022
  • 资助金额:
    $ 78万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2211492
  • 财政年份:
    2022
  • 资助金额:
    $ 78万
  • 项目类别:
    Standard Grant

相似国自然基金

Ia型超新星及相关特殊天体研究
  • 批准号:
    12333008
  • 批准年份:
    2023
  • 资助金额:
    239.00 万元
  • 项目类别:
    重点项目
年轻Ia型超新星遗迹在湍动背景场中的数值模拟研究
  • 批准号:
    12203042
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
甘蓝型油菜BnaA01.IA调控花序结构的分子机制解析
  • 批准号:
    32201791
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
Ia型超新星抛射物元素丰度与时域观测特征相关性研究
  • 批准号:
    12203029
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
甘蓝型油菜BnaA01.IA调控花序结构的分子机制解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 78万
  • 项目类别:
    Standard Grant
BigData:IA:Collaborative Research: TIMES: A tensor factorization platform for spatio-temporal data
BigData:IA:协作研究:TIMES:时空数据张量分解平台
  • 批准号:
    2034479
  • 财政年份:
    2020
  • 资助金额:
    $ 78万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 78万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 78万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了