BIGDATA: Collaborative Research: IA: Hardware and Software for Spike Detection and Sorting in Massively Parallel Electrophysiological Recording Systems for the Brain

BIGDATA:协作研究:IA:用于大脑大规模并行电生理记录系统中尖峰检测和排序的硬件和软件

基本信息

  • 批准号:
    1546273
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-10-01 至 2019-09-30
  • 项目状态:
    已结题

项目摘要

Understanding how the brain works is arguably one of the most significant scientific challenges of our time and the focus of the BRAIN initiative. It is widely believed that neural circuit function is emergent, the result of complex interactions between constituents with individual neurons forming synaptic connections with thousands of other neurons. Mapping of these complex circuits has been virtually impossible because of the reliance on electrophysiological recordings which sample these networks extremely sparsely. These tools for extracellular spike recordings are only able to simultaneously record from several tens to a few hundred neurons. Raw signals from these recording electrodes are first filtered to remove out-of-band signals. Putative spike events are then detected and extracted. Finally, these snippets of time-series event are sorted, typically on the basis of waveform shapes, into clusters. Even at the very modest bandwidths for these systems, computing systems struggle to save the data and process the resulting data sets. Scalability of these measurement techniques by many orders of magnitude in recording density and channels will be essential to future progress in understanding neuron circuits.This project is exploiting emerging electrophysiological recording systems in which the electrode (and channel) count is increased by almost three orders of magnitude over conventional systems with data bandwidths exceeding 1GB/sec. To handle these data bandwidths and resulting data volumes and deliver scalability, this project will develop dedicated hardware and associated algorithms for spike detection and sorting that allow these tasks to be performed in real-time in close proximity to the recording system. Compression by more than three orders of magnitude is possible by these means by taking advantage of the special spatiotemporal local structure in these data sets; by exploiting strong prior information about the spiking signal and reducing the dimensionality of the problem accordingly; and by adapting and extending modern scalable nonparametric Bayesian inference methods. In addition to providing important new tools for neuroscience, the tools developed here for scalable real-time event detection and annotation have broad applicability to other spatiotemporal data sets (or more generally, any data set comprising multiple streams of data, in which the streams could involve different data modalities) in which objects of interest are spatially and temporally localized with fixed spatial footprints. Examples abound in cell and molecular biology, particle and solid-state physics, financial monitoring, monitoring of power networks, and sensor networks.
了解大脑的工作原理可以说是我们这个时代最重大的科学挑战之一,也是 BRAIN 计划的重点。人们普遍认为,神经回路功能是自然出现的,是各个神经元成分之间复杂相互作用的结果,这些神经元与数千个其他神经元形成突触连接。由于依赖于对这些网络进行极其稀疏采样的电生理记录,绘制这些复杂电路的图谱实际上是不可能的。这些用于细胞外尖峰记录的工具只能同时记录数十到数百个神经元。来自这些记录电极的原始信号首先被过滤以去除带外信号。然后检测并提取假定的尖峰事件。最后,通常根据波形形状将这些时间序列事件片段分类为簇。即使这些系统的带宽非常适中,计算系统也很难保存数据并处理生成的数据集。这些测量技术在记录密度和通道方面的可扩展性对于未来理解神经元电路的进展至关重要。该项目正在开发新兴的电生理记录系统,其中电极(和通道)数量比传统系统增加了近三个数量级,数据带宽超过 1GB/秒。为了处理这些数据带宽和由此产生的数据量并提供可扩展性,该项目将开发用于尖峰检测和排序的专用硬件和相关算法,使这些任务能够在靠近记录系统的地方实时执行。通过利用这些数据集中特殊的时空局部结构,可以实现三个以上数量级的压缩;通过利用有关尖峰信号的强大先验信息并相应地降低问题的维数;并通过调整和扩展现代可扩展的非参数贝叶斯推理方法。除了为神经科学提供重要的新工具之外,这里开发的用于可扩展实时事件检测和注释的工具还广泛适用于其他时空数据集(或更一般地说,任何包含多个数据流的数据集,其中数据流可能涉及不同的数据模态),其中感兴趣的对象在空间和时间上以固定的空间足迹进行定位。细胞和分子生物学、粒​​子和固态物理学、金融监控、电力网络监控和传感器网络等领域的例子比比皆是。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Tolias其他文献

Andreas Tolias的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andreas Tolias', 18)}}的其他基金

CRCNS US-German Research Proposal: Inception loops for interpretable tuning in macaque area V4
CRCNS 美德研究提案:猕猴 V4 区域可解释调谐的初始循环
  • 批准号:
    2113173
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CRCNS Research Proposal: Coding and Propagation of Uncertainty Information During Perceptual Decisions
CRCNS 研究提案:感知决策过程中不确定性信息的编码和传播
  • 批准号:
    1132009
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
  • 批准号:
    1934319
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838222
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838248
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了