BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications

BIGDATA:协作研究:F:数据驱动应用程序的整体优化

基本信息

  • 批准号:
    1546543
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-10-01 至 2020-09-30
  • 项目状态:
    已结题

项目摘要

We interact with online shopping and banking websites on a daily basis. Many of these websites are powered by data-driven applications. Such application often consists of two parts: an application hosted on an application server, and a database management system (DBMS) hosted on a separate server from the application server that maintains persistent data. Unfortunately, many data-driven applications suffer from performance problems, such as taking a long time to load a page or inability to scale up to serve large number of clients simultaneously. The state of the art in discovering and fixing performance problems in data-driven applications is to examine the two parts of the application separately, and doing so misses many opportunities in discovering and fixing such problems. Unlike prior approaches, in this project we will treat the DBMS and the application in tandem. In particular, we will devise new techniques and tools to help identify performance problems, understand the cause of such problems, and fix them automatically. This project will open up new opportunities in cross-layer program compilation and optimization, with the practical goal of improving the performance of data-driven applications that will have a significant impact in many aspects of our daily lives. The findings from this project will be incorporated into undergraduate and graduate software engineering, introduction to data management, and compiler classes to be offered at the University of Chicago and the University of Washington. The outreach activities of this project will include engaging and advising students through special programs geared toward under-represented groups such as the Distributed Research Experiences for Undergraduates (DREU) organized by CRA-W (Computing Research Association -- Women) and Diversity Workshops organized by CRA-W.Specifically, the proposed research consists of three thrusts: (1) a new cross-layer program analysis framework that produces an end-to-end profile of data-driven applications by understanding the application code, the queries that the application sends to the DBMS, and how the DBMS processes such queries; (2) a program analysis and testing framework that identify performance problems in data-driven applications by leveraging the end-to-end profile created from (1); and (3) new means to optimize data-driven applications by transforming both the application code and the queries that are issued. These three thrusts will work together to improve the performance of data-driven applications and help programmers detect performance problems during development. Software developed by this project, benchmarks used for evaluation, and performance comparison with existing techniques will be released to public domain through the project website. Further information will be available at the project website (https://people.eecs.berkeley.edu/~akcheung/coopt.html).
我们每天都与网上购物和银行网站互动。这些网站中的许多都是由数据驱动的应用程序提供支持的。这样的应用程序通常由两部分组成:托管在应用程序服务器上的应用程序,以及托管在与维护持久数据的应用程序服务器不同的服务器上的数据库管理系统(DBMS)。不幸的是,许多数据驱动的应用程序都存在性能问题,例如加载页面需要很长时间,或者无法扩展以同时为大量客户端提供服务。在数据驱动的应用程序中发现和修复性能问题的最新技术是分别检查应用程序的两个部分,这样做会错过许多发现和修复此类问题的机会。与以前的方法不同,在这个项目中,我们将把DBMS和应用程序放在一起处理。特别是,我们将设计新的技术和工具来帮助识别性能问题,了解这些问题的原因,并自动修复它们。该项目将在跨层程序编译和优化方面开辟新的机会,其实际目标是提高数据驱动应用程序的性能,这些应用程序将对我们日常生活的许多方面产生重大影响。这个项目的研究结果将被纳入本科生和研究生的软件工程,介绍数据管理,并在芝加哥大学和华盛顿大学提供编译器类。该项目的外展活动将包括通过面向代表性不足群体的特别计划,如由CRA-W组织的本科生分布式研究经验(DREU),吸引学生并为学生提供咨询具体而言,拟议的研究包括三个重点:(1)新的跨层程序分析框架,其通过理解应用程序代码、应用程序发送到DBMS的查询以及DBMS如何处理这些查询来产生数据驱动应用程序的端到端简档;(2)程序分析和测试框架,其通过利用从(1)创建的端到端简档来识别数据驱动应用程序中的性能问题;以及(3)通过转换应用程序代码和发出的查询来优化数据驱动应用程序的新手段。这三个方面将共同提高数据驱动应用程序的性能,并帮助程序员在开发过程中检测性能问题。该项目开发的软件、用于评估的基准以及与现有技术的性能比较将通过项目网站向公共领域发布。更多信息可在项目网站(https://people.eecs.berkeley.edu/coopt.html)上查阅。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shan Lu其他文献

The Research of Enterprise Informatization Upgrade Investment Resource Allocation
企业信息化升级投资资源配置研究
Design of a sector bowtie nano-rectenna for optical power and infrared detection
用于光功率和红外检测的扇形领结纳米整流天线的设计
  • DOI:
    10.1007/s11467-015-0508-7
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Kai Wang;Haifeng Hu;Shan Lu;Lingju Guo;Tao He
  • 通讯作者:
    Tao He
Microbacterium chengjingii sp. nov. and Microbacterium fandaimingii sp. nov., isolated from bat faeces of Hipposideros and Rousettus species.
城津微杆菌
Generalized construction of signature code for multiple-access adder channel
多路访问加法器通道签名代码的广义构造
Decoding for non-binary signature code
非二进制签名代码的解码

Shan Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shan Lu', 18)}}的其他基金

CSR: Medium: Improving the Interface between Machine Learning and Software Systems
CSR:中:改进机器学习和软件系统之间的接口
  • 批准号:
    2313190
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for 2020 ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS)
NSF 学生旅费资助 2020 年 ACM 国际编程语言和操作系统架构支持会议 (ASPLOS)
  • 批准号:
    1936025
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CNS Core: Medium: Accurate Anytime Learning for Energy andTimeliness in Software Systems
CNS 核心:中:随时准确学习软件系统的能量和及时性
  • 批准号:
    1956180
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Student Travel Support for 2016 USENIX Annual Technical Conference
2016 年 USENIX 年度技术会议的学生旅行支持
  • 批准号:
    1632170
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CSR: Medium:Collaborative Research:Holistic, Cross-Site, Hybrid System Anomaly Debugging for Large Scale Hosting Infrastructures
CSR:中:协作研究:大规模托管基础设施的整体、跨站点、混合系统异常调试
  • 批准号:
    1514256
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CAREER: Combating Performance Bugs in Software Systems
职业:对抗软件系统中的性能错误
  • 批准号:
    1514189
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
XPS: FULL: CCA: Production-Run Failure Recovery Based Approach to Reliable Parallel Software
XPS:完整:CCA:基于生产运行故障恢复的可靠并行软件方法
  • 批准号:
    1439091
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Combating Performance Bugs in Software Systems
职业:对抗软件系统中的性能错误
  • 批准号:
    1054616
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Fighting Concurrency Bugs through Effect-Oriented Approaches
通过面向效果的方法对抗并发错误
  • 批准号:
    1018180
  • 财政年份:
    2010
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
  • 批准号:
    1934319
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838222
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838248
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了