EARS: Machine Learning and Social Protocols for Enhancing Spectrum Access for Wireless Communications

EARS:用于增强无线通信频谱访问的机器学习和社交协议

基本信息

  • 批准号:
    1546689
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-10-01 至 2019-09-30
  • 项目状态:
    已结题

项目摘要

Radio spectrum is a scarce resource that needs to be managed. Towards this end, this project designs, implements and studies novel protocols for enhancing access to radio spectrum by taking advantage of the fundamentals of human behavior. It produces technologies, theories, and guidelines for protocols that are expected to significantly improve the efficiency of spectrum access. This may lead to substantial societal impact by allowing more work to be done with the same resources. Success will also benefit the environment by limiting the infrastructure needed for the required data traffic; both energy and infrastructure investment can be minimized. Further, the project creates a model of human behavior in a specific technical context that can serve as a basis for similar projects in other technology areas involving resource optimization. The project creates anonymized datasets, and tools to analyze human and wireless behavior, all of which will be distributed to the general public. This project has important educational and training benefits at high school, undergraduate and graduate levels, including undergraduate research prototyping projects, and new graduate-level courses and seminars. This interdisciplinary project applies and develops expertise from areas of social computing, machine learning, wireless technology, security engineering, physical analogs, mobile systems, and user-centered design. The project implements and deploys a system that enables efficient bandwidth sharing with machine learning and social protocols that goes beyond what is possible with technology alone. Social protocols are cooperative yet discretionary methods that allow to users distribute access more fairly using inherently natural decision-making processes as opposed to externally imposed ones. The project consists of three major activities: (1) study the main approaches to social protocols, including persuasive computing, clinical behavior change theories, and micro-tasks; (2) develop a system that observes users trying to access the network and facilitates control rules that allow maximum value to users in the most transparent way; and (3) deploy these social protocols and the system in live networks to evaluate the approaches in real-life settings.
无线电频谱是一种需要管理的稀缺资源。为此,该项目设计,实施和研究新的协议,通过利用人类行为的基本原理来加强对无线电频谱的访问。它产生的技术,理论和协议的指导方针,预计将显着提高频谱接入的效率。这可能会产生重大的社会影响,因为可以用同样的资源完成更多的工作。成功还将通过限制所需数据流量所需的基础设施来使环境受益;能源和基础设施投资都可以最小化。此外,该项目在特定的技术背景下创建了一个人类行为模型,可以作为涉及资源优化的其他技术领域的类似项目的基础。 该项目创建匿名数据集和工具来分析人类和无线行为,所有这些都将分发给公众。该项目在高中、本科和研究生阶段具有重要的教育和培训效益,包括本科生研究原型项目以及新的研究生课程和研讨会。这个跨学科的项目应用和开发来自社会计算,机器学习,无线技术,安全工程,物理模拟,移动的系统和以用户为中心的设计领域的专业知识。该项目实现并部署了一个系统,该系统能够通过机器学习和社交协议实现高效的带宽共享,这超出了仅凭技术所能实现的范围。社会协议是合作但自由裁量的方法,允许用户使用固有的自然决策过程,而不是外部强加的,更公平地分配访问。该项目包括三个主要活动:(1)研究社会协议的主要方法,包括说服计算,临床行为改变理论和微任务;(2)开发一个系统,观察试图访问网络的用户,并促进控制规则,以最透明的方式为用户提供最大价值;以及(3)将这些社交协议和系统部署在实时网络中,以评估现实生活环境中的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Janne Lindqvist其他文献

Rhetorica Scandinavica
斯堪的纳维亚修辞学
  • DOI:
    10.52610/cmuc2085
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huvudredaktör Eirik Vatnøy;Janne Lindqvist;Øyvind Ihlen;Laurie E. Gries;Patrik Mehrens
  • 通讯作者:
    Patrik Mehrens
Privacy of Default Apps in Apple's Mobile Ecosystem
Apple 移动生态系统中默认应用程序的隐私
Swapping 5G for 3G: Motivations, Experiences, and Implications of Contemporary Dumbphone Adoption
将 5G 替换为 3G:当代哑机采用的动机、经验和影响
From Disorientation to Harmony: Autoethnographic Insights into Transformative Videogame Experiences
从迷失方向到和谐:对变革性视频游戏体验的自民族志洞察

Janne Lindqvist的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Janne Lindqvist', 18)}}的其他基金

CAREER: Science of Security for Mobile User Authentication
职业:移动用户身份验证的安全科学
  • 批准号:
    1750987
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
TWC: Medium: Collaborative: Capturing People's Expectations of Privacy with Mobile Apps by Combining Automated Scanning and Crowdsourcing Techniques
TWC:媒介:协作:结合自动扫描和众包技术,利用移动应用捕捉人们对隐私的期望
  • 批准号:
    1228777
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TWC: Small: Redesigning Mobile Privacy: Helping Developers to Protect Users
TWC:小:重新设计移动隐私:帮助开发者保护用户
  • 批准号:
    1223977
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SoCS: Collaborative Research: Local Community Crowdsourcing of Physical-World Tasks with Myrmex
SoCS:协作研究:本地社区与 Myrmex 一起众包物理世界任务
  • 批准号:
    1211079
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
  • 批准号:
    10073285
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
  • 批准号:
    LP230100439
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Linkage Projects
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
  • 批准号:
    EP/X033244/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
  • 批准号:
    2346717
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
  • 批准号:
    2342574
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了