I-Corps: Automatically Localizing Functional Faults In Deployed Software Applications

I-Corps:自动定位已部署软件应用程序中的功能故障

基本信息

  • 批准号:
    1547597
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-15 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Very few problems impact people more negatively than field failures, where deployed software behaves incorrectly. Just like distinct human anatomies would prevent medical professionals from quickly diagnosing diseases using symptoms, production fault localization requires a huge effort from software professionals, since each software application has its own unique structure and programmers must spend a lot of time to understand it even for smaller applications. Not only do field failures zap customer confidence in software applications, but also they cost dearly, sometimes in human lives, since software applications support all aspects of our lives. Despite hundreds of different approaches for fault localization, the problem of localizing production faults for field failures automatically is unsolved. A problem is that production faults are not known by definition when the application is deployed, therefore running existing test suites is not applicable. Only when field failures occur in a deployed application can programmers start analyzing the symptoms to determine what faults cause them. Time to fix is critical, since the applications' downtime often costs thousands of dollars per minute. Currently, there is no solution that can automatically localize functional production faults in deployed software applications with a high degree of precision using only symptoms of the field failures and input values and without deploying instrumented applications and without collecting any runtime data and without having any tests with oracles, without performing successful and failed runs, and without collecting large amounts of state information from field failures. This I-Corps team proposes a novel research program for Automatically Localizing Faults For Functional Field Failures in Applications (pronounced as al-five) that enables stakeholders to enter symptoms of a failure that occurs during deployment of a given application and the input and configuration parameter values, and ALF5 will return locations in the code that are likely to contain specific faults and it recommends modifications to the code at these locations that can fix these faults. Examples of symptoms of failures include but not limited to incorrect output values, program crashes and computations that take much more time that they are supposed to, possibly indicating infinite loops. The team plans to explore partnering with potential customers who can provide production worthy systems upon which to demonstrate the proposed innovation and can help the team scale up its innovation to commercial delivery. The most likely markets for the proposed innovation are: software systems developers, like IBM Global Services and Sapient and Accenture; business process outsourcing firms like Deloitte and CSC, that host complex applications on behalf of customers; and companies with complex in-production custom systems, e.g., insurance processing, transportation logistics.
很少有问题比现场故障对人们的影响更负面,现场故障是指部署的软件行为不正确。就像不同的人体解剖结构会阻止医疗专业人员使用症状快速诊断疾病一样,生产故障定位需要软件专业人员付出巨大的努力,因为每个软件应用程序都有自己独特的结构,程序员必须花费大量时间来理解它,即使是较小的应用程序。现场故障不仅会削弱客户对软件应用程序的信心,而且还会付出高昂的代价,有时甚至是人命,因为软件应用程序支持我们生活的各个方面。尽管有数百种不同的故障定位方法,但自动定位现场故障的生产故障的问题尚未解决。一个问题是,在部署应用程序时,根据定义,生产故障是未知的,因此运行现有的测试套件是不适用的。只有当部署的应用程序中发生现场故障时,程序员才可以开始分析症状,以确定是什么故障导致了这些故障。修复时间至关重要,因为应用程序的停机时间通常每分钟花费数千美元。目前,没有解决方案可以仅使用现场故障的症状和输入值以高精度自动地定位部署的软件应用中的功能生产故障,而不部署仪表化应用,不收集任何运行时数据,不具有任何使用预言机的测试,不执行成功和失败的运行,并且不从现场故障收集大量的状态信息。这个I-Corps团队提出了一个新的研究计划,用于自动定位应用程序中功能字段故障的故障(发音为AL-Five),其使得利益相关者能够输入在给定应用程序的部署期间发生的故障的症状以及输入和配置参数值,和ALF 5将返回代码中可能包含特定错误的位置,并建议修改这些位置的代码以修复这些错误断层故障症状的示例包括但不限于不正确的输出值、程序崩溃以及花费比它们应该花费的时间多得多的时间的计算,可能指示无限循环。该团队计划探索与潜在客户合作,这些客户可以提供具有生产价值的系统,以展示拟议的创新,并可以帮助团队将其创新扩展到商业交付。拟议创新最有可能的市场是:软件系统开发商,如IBM全球服务和Sapient和埃森哲;业务流程外包公司,如Deloitte和CSC,代表客户托管复杂的应用程序;以及拥有复杂的生产定制系统的公司,例如,保险加工、运输物流。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Grechanik其他文献

Testing software in age of data privacy: a balancing act
数据隐私时代的软件测试:平衡之举

Mark Grechanik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Grechanik', 18)}}的其他基金

SaTC: CORE: Small: Defense by Deception of Smartphone Software Applications For Users With Disabilities
SaTC:核心:小型:针对残障用户的智能手机软件应用程序的欺骗防御
  • 批准号:
    2129739
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
SHF:Small:Proving User Interface Testing Programs Correct
SHF:小:证明用户界面测试程序的正确性
  • 批准号:
    2120142
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
SHF: Small:Automatically Synthesizing System and Integration Tests
SHF:小型:自动综合系统和集成测试
  • 批准号:
    1908094
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
EAGER: Securing Smartphone Applications Against Rapidly Expanding Accessibility-Based Attacks
EAGER:保护智能手机应用程序免受快速扩展的基于辅助功能的攻击
  • 批准号:
    1650000
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
SHF: Small: Automatically Localizing Functional Faults In Deployed Software Applications
SHF:小型:自动定位已部署软件应用程序中的功能故障
  • 批准号:
    1615563
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Travel Support For ACM/IEEE International Conference on Software Engineering (ICSE 2014)
ACM/IEEE 软件工程国际会议 (ICSE 2014) 差旅支持
  • 批准号:
    1360923
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Linking Evolving Software Requirements and Acceptance Tests
III:小:协作研究:将不断发展的软件需求和验收测试联系起来
  • 批准号:
    1217928
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Preserving Test Coverage While Achieving Data Anonymity for Database-Centric Applications
SHF:小型:协作研究:保留测试覆盖率,同时实现以数据库为中心的应用程序的数据匿名性
  • 批准号:
    1017633
  • 财政年份:
    2010
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Research: Creating and Evolving Software via Searching, Selecting and Synthesizing Relevant Source Code
III:小:协作研究:通过搜索、选择和综合相关源代码来创建和发展软件
  • 批准号:
    0916139
  • 财政年份:
    2009
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似海外基金

An AI-driven clinical washbasin unit that automatically disinfects pathogens, reduces aerosols and decreases healthcare-acquired infections by 70%
%20人工智能驱动%20临床%20洗脸盆%20单位%20%20自动%20消毒%20病原体,%20减少%20气溶胶%20和%20减少%20医疗保健获得性%20感染%20by%2070%
  • 批准号:
    83001507
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Innovation Loans
Collaborative Research: SHF: Medium: Improving Software Quality by Automatically Reproducing Failures from Bug Reports
协作研究:SHF:中:通过自动重现错误报告中的故障来提高软件质量
  • 批准号:
    2403747
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
This project will leverage artificial neural networks to automatically build various components of particle filters.
该项目将利用人工神经网络自动构建粒子滤波器的各种组件。
  • 批准号:
    2841890
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Studentship
The DOVE Device to Prevent Opioid Overdose Deaths: An Armband That Senses Overdose and Automatically Injects Naloxone
防止阿片类药物过量死亡的 DOVE 装置:可感应过量并自动注射纳洛酮的臂带
  • 批准号:
    10485568
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Innovative software for the mining industry that automatically designs optimally shaped slopes in any lithology within a suitably short runtime
适用于采矿业的创新软件,可在适当短的运行时间内自动设计任何岩性的最佳形状斜坡
  • 批准号:
    10078412
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Collaborative R&D
PatentPulseAI: feasibility study of an AI-based solution to automatically assess the value of a given patent and continuously check for infringement.
PatentPulseAI:基于人工智能的解决方案的可行性研究,可自动评估给定专利的价值并持续检查侵权情况。
  • 批准号:
    10079851
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Collaborative R&D
Using Re-inforcement Learning to Automatically Adapt a Remote Therapy Intervention (RTI) for Reducing Adolescent Violence Involvement
使用强化学习自动调整远程治疗干预 (RTI),以减少青少年暴力参与
  • 批准号:
    10834339
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Detection and Analysis of Automatically Generated Text according to the Applications
根据应用自动生成文本的检测和分析
  • 批准号:
    23K11767
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of Matched and Unmatched Stimuli on the Maintenance of Treatment Effects for Automatically Maintained Self-Injurious Behavior (AUTO)
匹配和不匹配刺激对自动维持自伤行为(AUTO)治疗效果维持的评估
  • 批准号:
    10729880
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
ArchAI: Using AI to automatically detect archaeology on EO data
ArchAI:利用人工智能自动检测对地观测数据的考古学
  • 批准号:
    10047167
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了