RESEARCH: Predicting Genotypic Variation in Growth and Yield under Abiotic Stress through Biophysical Process Modeling

研究:通过生物物理过程建模预测非生物胁迫下生长和产量的基因型变异

基本信息

  • 批准号:
    1547796
  • 负责人:
  • 金额:
    $ 345.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Rising demand for high quality food crops due to increasing world populations along with more likely temperature and drought stress requires further crop improvements from breeding programs. A major limitation to these programs is an understanding of how the genetic information affects the characteristics of plants that improve the amount of edible portions. Moreover, the predictive understanding is even less if the plants are placed in new, stressful environments like low rainfall or high temperature. A likely avenue of inquiry to improve breeding is to better connect how information stored in genes becomes traits of plants that combine their biology, such as photosynthetic rate or the amount of resources allocated to an edible root, with the physical world, such as the amount of water available or an excessive heat wave. These connections are currently often made in a way that requires new data collection for every new crop plant or environment such as a new soil, new temperature range or even a new improved line that shows variation in the amount of resources the plant allocates to an edible root. This continuous need for new information ultimately slows down the breeding program and the ability of plant scientists to quickly respond to the needs of society. This project will test a new approach that uses large amounts of data to calculate the probability that a particular plant characteristic will be displayed by a given plant line under various environmental conditions. Specifically, the project will measure plant performance continuously by sending electrical pulses through plants, integrating the data generated with large data sets that show which genes are active as well as the level of biologically relevant molecules that contribute to major metabolic pathways within the plants at any given time. This new approach requires high performance computing to test many times how the probability of phenotypic improvement in the crop may occur. These high performance computing approaches will become a core part of a modern, competitive workforce. In this regard, the project will provide workshops for high school teachers in the use of high performance yet open source computing tools in their classrooms. In addition, the project will develop experimental and computational modules in biological and quantitative learning for students in grades 6-12 using the highly successful Wisconsin FastPlants system (http://www.fastplants.org/). With increasing world populations, genetic advances to improve crop growth, yield and resistance to abiotic stress are a pressing need. Limiting the speed of crop improvement is a crucial knowledge gap regarding biophysical processes that modulate the relationship between the genome and phenome, hindering the ability to predict the phenotype of novel genotypes in novel environments. As a first step towards bridging this gap, a combination of high-throughput phenotyping and biophysical process modeling will incorporate allelic variation at key genes affecting plant carbon metabolism, hydraulics, and resource allocation, all of which are known to impact drought- and heat-stress resistance in plants. Variable selective pressures during crop diversification have caused extensive phenotypic variation among B. rapa crops, making it an excellent study system to both connect organ-level measures both down to the level of transcriptomic and metabolomic phenotypes and up to yield and to test predictive process models. Process models will be developed and refined using the mechanistic links that connect cell processes and ultimately whole plant physiology to regulatory intermediates such as metabolites and gene transcripts. If successful, the models developed will enable prediction of whole-plant stress-response phenotypes in heterogeneous genotypes and environments. The goals of the project are to: 1) deploy a novel high-throughput and real-time phenotyping method to measure diel physiological dynamics in eight B. rapa parental Nested Association Mapping (NAM) lines under drought- and heat-stress conditions; 2) predict yield in a Recombinant Inbred Line (RIL) population of B. rapa using a biophysical process model of carbon metabolism, hydraulics and resource allocation to test systems-level links between circadian, transcriptomic, metabolomic, and physiological QTL; and 3) test the predictive ability of the biophysical process model under heat- and drought-stress environments using the RIL population used in Aim 2. All data and resources generated in this project will be made accessible to the public through long-term open access repositories such as Project Github and the NCBI Short Read Archive.
由于世界人口的增加以及更可能出现的温度和干旱压力,对高质量粮食作物的需求不断增加,这需要从育种计划中进一步改进作物。这些计划的一个主要限制是对遗传信息如何影响植物特性的理解,从而提高了可食用部分的数量。此外,如果植物被放置在新的、有压力的环境中,比如低降雨或高温,这种预测性的理解就更少了。改善育种的一个可能的研究途径是更好地将储存在基因中的信息如何成为植物的特征,这些特征结合了它们的生物学特性,如光合作用速率或分配给可食用根的资源数量,以及物理世界,如可用水量或过度热浪。目前,建立这些联系的方式通常需要为每一种新的作物或环境收集新的数据,例如新的土壤、新的温度范围,甚至是显示植物分配给可食用根的资源数量变化的新的改良线。这种对新信息的持续需求最终减慢了育种计划和植物科学家快速响应社会需求的能力。该项目将测试一种新方法,该方法使用大量数据来计算特定植物特征在各种环境条件下由给定植物系显示的概率。具体来说,该项目将通过向植物发送电脉冲来持续测量植物的表现,将产生的数据与大型数据集相结合,显示在任何给定时间内哪些基因是活跃的,以及对植物主要代谢途径有贡献的生物相关分子的水平。这种新方法需要高性能计算来多次测试作物表型改善的可能性。这些高性能计算方法将成为现代竞争劳动力的核心部分。在这方面,该项目将为高中教师提供在课堂上使用高性能开源计算工具的讲习班。此外,该项目将使用非常成功的威斯康星快速植物系统(http://www.fastplants.org/)为6-12年级的学生开发生物和定量学习的实验和计算模块。随着世界人口的增加,提高作物生长、产量和抗非生物胁迫的遗传进展是迫切需要的。限制作物改良的速度是调节基因组和表型之间关系的生物物理过程的关键知识差距,阻碍了在新环境中预测新基因型表型的能力。作为弥补这一差距的第一步,高通量表型和生物物理过程建模的结合将纳入影响植物碳代谢、水力学和资源分配的关键基因的等位基因变异,所有这些基因都已知会影响植物的干旱和热胁迫抗性。在作物多样化过程中,不同的选择压力导致了rapa作物之间广泛的表型变异,使其成为一个很好的研究系统,既可以将器官水平的测量连接到转录组学和代谢组学表型水平,也可以连接到产量水平,还可以测试预测过程模型。过程模型将利用将细胞过程和最终整个植物生理学与代谢物和基因转录物等调节中间体联系起来的机制联系来开发和完善。如果成功,所开发的模型将能够预测异种基因型和环境下的全植物应激反应表型。该项目的目标是:1)部署一种新的高通量和实时表型方法来测量干旱和热胁迫条件下8个B. rapa亲本巢式关联图谱(NAM)系的昼夜生理动态;2)利用碳代谢、水力学和资源分配的生物物理过程模型预测rapa重组自交系(RIL)群体的产量,以测试昼夜节律、转录组学、代谢组学和生理QTL之间的系统水平联系;3)利用Aim 2中使用的RIL种群,检验热干旱胁迫环境下生物物理过程模型的预测能力。本项目产生的所有数据和资源将通过长期开放访问存储库(如project Github和NCBI Short Read Archive)向公众开放。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brent Ewers其他文献

Brent Ewers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brent Ewers', 18)}}的其他基金

RII Track-1: Anticipating the Climate-Water Transition and Cascading Challenges to Socio-Environmental Systems in America's Headwaters
RII Track-1:预测气候-水转变以及美国源头社会环境系统面临的级联挑战
  • 批准号:
    2149105
  • 财政年份:
    2022
  • 资助金额:
    $ 345.8万
  • 项目类别:
    Cooperative Agreement
RII Track-1: Linking Microbial Life to Ecosystem Services Across Wyoming's Dynamic Landscape
RII Track-1:将怀俄明州动态景观中的微生物生命与生态系统服务联系起来
  • 批准号:
    1655726
  • 财政年份:
    2017
  • 资助金额:
    $ 345.8万
  • 项目类别:
    Cooperative Agreement
Water in a Changing West: The Wyoming Center for Environmental Hydrology and Geophysics
不断变化的西部地区的水:怀俄明州环境水文学和地球物理学中心
  • 批准号:
    1208909
  • 财政年份:
    2012
  • 资助金额:
    $ 345.8万
  • 项目类别:
    Cooperative Agreement
ETBC: Collaborative Research: Quantifying the Effects of Large-Scale Vegetation Change on Coupled Water, Carbon, and Nutrient Cycles: Beetle Kill in Western Montane Forests
ETBC:合作研究:量化大规模植被变化对耦合水、碳和养分循环的影响:西部山地森林中的甲虫死亡
  • 批准号:
    0910731
  • 财政年份:
    2009
  • 资助金额:
    $ 345.8万
  • 项目类别:
    Standard Grant
Effects of Wildfire Disturbance on Water Budgets of Boreal Black Spruce Forests
野火干扰对北方黑云杉林水分收支的影响
  • 批准号:
    0515957
  • 财政年份:
    2005
  • 资助金额:
    $ 345.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Restricted Plasticity of Canopy Stomatal Conductance: A Conceptual Basis for Simpler Spatial Models of Forest Transpiration
合作研究:冠层气孔导度的限制可塑性:更简单的森林蒸腾空间模型的概念基础
  • 批准号:
    0405381
  • 财政年份:
    2004
  • 资助金额:
    $ 345.8万
  • 项目类别:
    Standard Grant

相似海外基金

Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
  • 批准号:
    EP/Y03614X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 345.8万
  • 项目类别:
    Research Grant
NSF PRFB FY 2023: Considering evolutionary responses to temperature variability when predicting risk to climate change and disease in amphibians
NSF PRFB 2023 财年:在预测气候变化和两栖动物疾病风险时考虑对温度变化的进化反应
  • 批准号:
    2305659
  • 财政年份:
    2024
  • 资助金额:
    $ 345.8万
  • 项目类别:
    Fellowship Award
Predicting effects of interannual variability in climate and drought on plant community outcomes, resilience, and soil carbon using temporally replicated grassland reconstructions
使用临时复制的草地重建来预测气候和干旱的年际变化对植物群落结果、恢复力和土壤碳的影响
  • 批准号:
    2343738
  • 财政年份:
    2024
  • 资助金额:
    $ 345.8万
  • 项目类别:
    Continuing Grant
Predicting abnormalities in abdominal organs through prognostic factors extracted from image data
通过从图像数据中提取的预后因素来预测腹部器官的异常
  • 批准号:
    24K21121
  • 财政年份:
    2024
  • 资助金额:
    $ 345.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
R-Map - Mapping, understanding, assessing and predicting the effects of remote working arrangements in urban and rural areas
R-Map - 绘制、理解、评估和预测城乡地区远程工作安排的影响
  • 批准号:
    10106145
  • 财政年份:
    2024
  • 资助金额:
    $ 345.8万
  • 项目类别:
    EU-Funded
Predicting future biodiversity of ecosystem service providers in Japan using new approaches to quantify and reduce uncertainty
使用量化和减少不确定性的新方法来预测日本生态系统服务提供者的未来生物多样性
  • 批准号:
    24K09176
  • 财政年份:
    2024
  • 资助金额:
    $ 345.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CPS: Medium: Federated Learning for Predicting Electricity Consumption with Mixed Global/Local Models
CPS:中:使用混合全局/本地模型预测电力消耗的联合学习
  • 批准号:
    2317079
  • 财政年份:
    2024
  • 资助金额:
    $ 345.8万
  • 项目类别:
    Standard Grant
Predicting emergence risk of future zoonotic viruses through computational learning
通过计算学习预测未来人畜共患病毒的出现风险
  • 批准号:
    MR/X019616/1
  • 财政年份:
    2024
  • 资助金额:
    $ 345.8万
  • 项目类别:
    Fellowship
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 345.8万
  • 项目类别:
    Standard Grant
CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
  • 批准号:
    2338221
  • 财政年份:
    2024
  • 资助金额:
    $ 345.8万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了