INSPIRE: Teaming Citizen Science with Machine Learning to Deepen LIGO's View of the Cosmos
INSPIRE:将公民科学与机器学习相结合,深化 LIGO 的宇宙观
基本信息
- 批准号:1547880
- 负责人:
- 金额:$ 99.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This INSPIRE award is partially funded by the Cyber-Human Systems Program in the Division of Information and Intelligent Systems in the Directorate for Computer Science and Engineering, the Gravitational Physics Program in the Division of Physics in the Directorate for Mathematical and Physical Sciences, and the Office of Integrative Activities.This innovative project will develop a citizen science system to support the Advanced Laser Interferometer Gravitational wave Observatory (aLIGO), the most complicated experiment ever undertaken in gravitational physics. Before the end of this decade it will open up the window of gravitational wave observations on the Universe. However, the high detector sensitivity needed for astrophysical discoveries makes aLIGO very susceptible to noncosmic artifacts and noise that must be identified and separated from cosmic signals. Teaching computers to identify and morphologically classify these artifacts in detector data is exceedingly difficult. Human eyesight is a proven tool for classification, but the aLIGO data streams from approximately 30,000 sensors and monitors easily overwhelm a single human. This research will address these problems by coupling human classification with a machine learning model that learns from the citizen scientists and also guides how information is provided to participants. A novel feature of this system will be its reliance on volunteers to discover new glitch classes, not just use existing ones. The project includes research on the human-centered computing aspects of this sociocomputational system, and thus can inspire future citizen science projects that do not merely exploit the labor of volunteers but engage them as partners in scientific discovery. Therefore, the project will have substantial educational benefits for the volunteers, who will gain a good understanding on how science works, and will be a part of the excitement of opening up a new window on the universe.This is an innovative, interdisciplinary collaboration between the existing LIGO, at the time it is being technically enhanced, and Zooniverse, which has fielded a workable crowdsourcing model, currently involving over a million people on 30 projects. The work will help aLIGO to quickly identify noise and artifacts in the science data stream, separating out legitimate astrophysical events, and allowing those events to be distributed to other observatories for more detailed source identification and study. This project will also build and evaluate an interface between machine learning and human learning that will itself be an advance on current methods. It can be depicted as a loop: (1) By sifting through enormous amounts of aLIGO data, the citizen scientists will produce a robust "gold standard" glitch dataset that can be used to seed and train machine learning algorithms that will aid in the identification task. (2) The machine learning protocols that select and classify glitch events will be developed to maximize the potential of the citizen scientists by organizing and passing the data to them in more effective ways. The project will experiment with the task design and workflow organization (leveraging previous Zooniverse experience) to build a system that takes advantage of the distinctive strengths of the machines (ability to process large amounts of data systematically) and the humans (ability to identify patterns and spot discrepancies), and then using the model to enable high quality aLIGO detector characterization and gravitational wave searches.
该INSPIRE奖的部分资金来自计算机科学与工程理事会信息与智能系统部的网络-人类系统项目、数学与物理科学理事会物理部的引力物理项目以及综合活动办公室。这个创新项目将开发一个公民科学系统,以支持先进激光干涉仪引力波天文台(aLIGO),这是迄今为止在引力物理学中进行的最复杂的实验。在这个十年结束之前,它将打开宇宙引力波观测的窗口。然而,天体物理发现所需的高探测器灵敏度使得aLIGO非常容易受到非宇宙人工制品和噪音的影响,这些噪音必须被识别并与宇宙信号分离。教计算机在探测器数据中对这些伪影进行识别和形态学分类是非常困难的。人类的视力是一种经过验证的分类工具,但来自大约30,000个传感器和监视器的aLIGO数据流很容易压倒一个人。这项研究将通过将人类分类与机器学习模型相结合来解决这些问题,该模型可以从公民科学家那里学习,并指导如何向参与者提供信息。该系统的一个新颖之处在于,它依赖志愿者来发现新的故障类,而不仅仅是使用现有的故障类。该项目包括对这个社会计算系统中以人为中心的计算方面的研究,因此可以启发未来的公民科学项目,这些项目不仅仅是利用志愿者的劳动,而是将他们作为科学发现的合作伙伴。因此,该项目将对志愿者有实质性的教育效益,他们将对科学如何运作有一个很好的了解,并将成为打开宇宙新窗口的兴奋的一部分。这是现有的LIGO和Zooniverse之间的一个创新的跨学科合作项目,前者在技术上得到了加强,后者已经建立了一个可行的众包模式,目前有超过100万人参与了30个项目。这项工作将帮助aLIGO快速识别科学数据流中的噪音和人工产物,分离出合法的天体物理事件,并允许这些事件分发给其他天文台,以进行更详细的来源识别和研究。该项目还将建立和评估机器学习和人类学习之间的接口,这本身就是对当前方法的进步。它可以被描述为一个循环:(1)通过筛选大量的aLIGO数据,公民科学家将产生一个强大的“黄金标准”故障数据集,该数据集可用于播种和训练有助于识别任务的机器学习算法。(2)将开发选择和分类故障事件的机器学习协议,以更有效的方式组织和传递数据,以最大限度地发挥公民科学家的潜力。该项目将试验任务设计和工作流程组织(利用以前的Zooniverse经验),以建立一个系统,利用机器(系统地处理大量数据的能力)和人类(识别模式和发现差异的能力)的独特优势,然后使用该模型实现高质量的aLIGO探测器表征和引力波搜索。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discovering features in gravitational-wave data through detector characterization, citizen science and machine learning
- DOI:10.1088/1361-6382/ac1ccb
- 发表时间:2021-03
- 期刊:
- 影响因子:3.5
- 作者:S. Soni;C. Berry;S. Coughlin;M. Harandi;C. Jackson;Kevin Crowston;C. Osterlund;O. Patane;A. Katsaggelos;L. Trouille;V-G Baranowski;W. Domainko;K. Kamiński;M. A. L. Rodriguez;U. Marciniak;P. Nauta;G. Niklasch;R. Rote;B. T'egl'as;C. Unsworth;C. Zhang
- 通讯作者:S. Soni;C. Berry;S. Coughlin;M. Harandi;C. Jackson;Kevin Crowston;C. Osterlund;O. Patane;A. Katsaggelos;L. Trouille;V-G Baranowski;W. Domainko;K. Kamiński;M. A. L. Rodriguez;U. Marciniak;P. Nauta;G. Niklasch;R. Rote;B. T'egl'as;C. Unsworth;C. Zhang
Gravity Spy Volunteer Classifications of LIGO Glitches from Observing Runs O1, O2, O3a, and O3b
重力间谍志愿者对 O1、O2、O3a 和 O3b 观测运行中的 LIGO 故障进行分类
- DOI:10.5281/zenodo.5911226
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zevin, Michael;Coughlin, Scott;Chase, Eve;Allen, Sara;Bahaadini, Sara;Berry, Christopher;Crowston, Kevin;Harandi, Mabi;Jackson, Corey;Kalogera, Vicky
- 通讯作者:Kalogera, Vicky
Gravity Spy: Humans, Machines and The Future of Citizen Science
重力间谍:人类、机器和公民科学的未来
- DOI:10.1145/3022198.3026329
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Crowston, Kevin
- 通讯作者:Crowston, Kevin
Design Principles for Background Knowledge to Enhance Learning in Citizen Science
加强公民科学学习的背景知识设计原则
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Crowston, K.;Jackson, C.;Corieri, I.;Østerlund, C.
- 通讯作者:Østerlund, C.
Building an Apparatus: Refractive, Reflective, and Diffractive Readings of Trace Data
构建设备:跟踪数据的折射、反射和衍射读数
- DOI:10.17705/1jais.00590
- 发表时间:2020
- 期刊:
- 影响因子:5.8
- 作者:Østerlund, Carsten;Crowston, Kevin;Jackson, Corey
- 通讯作者:Jackson, Corey
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vassiliki Kalogera其他文献
X-Ray Binaries in Nearby Galaxies
- DOI:
10.1007/s10509-006-9125-9 - 发表时间:
2006-07-21 - 期刊:
- 影响因子:1.500
- 作者:
Vassiliki Kalogera - 通讯作者:
Vassiliki Kalogera
Vassiliki Kalogera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vassiliki Kalogera', 18)}}的其他基金
Gravitational-Wave Data Analysis and Population Inference
引力波数据分析和总体推断
- 批准号:
2207945 - 财政年份:2022
- 资助金额:
$ 99.97万 - 项目类别:
Standard Grant
Gravitational-Wave Inference from Binary Compact Objects
二元致密天体的引力波推断
- 批准号:
1912648 - 财政年份:2019
- 资助金额:
$ 99.97万 - 项目类别:
Standard Grant
MRI: Acquisition of a High-Performance Computing Cluster to Unveil the Sources of Gravitational Waves
MRI:购买高性能计算集群来揭示引力波的来源
- 批准号:
1726951 - 财政年份:2017
- 资助金额:
$ 99.97万 - 项目类别:
Standard Grant
Gravitational-Wave Inference from Binary Compact Objects
二元致密天体的引力波推断
- 批准号:
1607709 - 财政年份:2016
- 资助金额:
$ 99.97万 - 项目类别:
Continuing Grant
NRT-DESE: Training in Data-Driven Discovery - From the Earth and the Universe to the Successful Careers of the Future
NRT-DESE:数据驱动发现培训 - 从地球和宇宙到未来成功的职业生涯
- 批准号:
1450006 - 财政年份:2015
- 资助金额:
$ 99.97万 - 项目类别:
Standard Grant
Supernova Progenitors, Stellar Remnants, and their Binary Companions
超新星前身、恒星遗迹及其双星伴星
- 批准号:
1517753 - 财政年份:2015
- 资助金额:
$ 99.97万 - 项目类别:
Standard Grant
REU Site: Preparing a Diverse Workforce through Interdisciplinary Astrophysics Research
REU 网站:通过跨学科天体物理学研究培养多元化的劳动力
- 批准号:
1359462 - 财政年份:2014
- 资助金额:
$ 99.97万 - 项目类别:
Continuing Grant
Gravitational-Wave Astrophysics: Getting Ready for the Advanced LIGO Era
引力波天体物理学:为高级 LIGO 时代做好准备
- 批准号:
1307020 - 财政年份:2013
- 资助金额:
$ 99.97万 - 项目类别:
Continuing Grant
MRI: Acquisition of A Hyrid High Performance Computer Cluster for Gravitational-Wave Source Simulation and Data Analysis
MRI:获取用于引力波源模拟和数据分析的混合高性能计算机集群
- 批准号:
1126812 - 财政年份:2011
- 资助金额:
$ 99.97万 - 项目类别:
Standard Grant
GRAVITATIONAL-WAVE ASTRONOMY WITH BINARY COMPACT OBJECTS: SOURCE MODELING AND LIGO DATA ANALYSIS
双致密天体的引力波天文学:源建模和 LIGO 数据分析
- 批准号:
0969820 - 财政年份:2010
- 资助金额:
$ 99.97万 - 项目类别:
Standard Grant
相似海外基金
SOPRANO - Socially-Acceptable and Trustworthy Human-Robot Teaming for Agile Industries
SOPRANO - 面向敏捷行业的社会可接受且值得信赖的人机协作
- 批准号:
10099796 - 财政年份:2023
- 资助金额:
$ 99.97万 - 项目类别:
EU-Funded
Socially-Acceptable and Trustworthy Human-Robot Teaming for Agile Industries
敏捷行业社会可接受且值得信赖的人机协作
- 批准号:
10079688 - 财政年份:2023
- 资助金额:
$ 99.97万 - 项目类别:
EU-Funded
HCC: Small: Leadership Emergence for Synchronous Human-Autonomy Teaming
HCC:小型:同步人类自主团队的领导力涌现
- 批准号:
2212386 - 财政年份:2023
- 资助金额:
$ 99.97万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: RESILIENCE: Graph Representation Learning for Fair Teaming in Crisis Response
合作研究:NSF-CSIRO:RESILIENCE:危机应对中公平团队的图表示学习
- 批准号:
2303038 - 财政年份:2023
- 资助金额:
$ 99.97万 - 项目类别:
Standard Grant
Academics4Rail: Building a Community of Railway Scientific Researchers and Academia for ERJU and Enabling a Network of PhDs (Academia Teaming with Industry)
Academys4Rail:为二院建立铁路科研人员和学术界社区并启用博士网络(学术界与工业界合作)
- 批准号:
10102850 - 财政年份:2023
- 资助金额:
$ 99.97万 - 项目类别:
EU-Funded
Academics4Rail: Building a community of railway scientific researchers and academia for ERJU and enabling a network of PhDs (academia teaming with industry)
Academys4Rail:为ERJU建立铁路科研人员和学术界社区并建立博士网络(学术界与工业界合作)
- 批准号:
10087488 - 财政年份:2023
- 资助金额:
$ 99.97万 - 项目类别:
EU-Funded
Human-Drones Teaming for Autonomous Rescue with Fast Reinforcement Learning
人机协作通过快速强化学习进行自主救援
- 批准号:
2788094 - 财政年份:2023
- 资助金额:
$ 99.97万 - 项目类别:
Studentship
Collaborative Research: NSF-CSIRO: RESILIENCE: Graph Representation Learning for Fair Teaming in Crisis Response
合作研究:NSF-CSIRO:RESILIENCE:危机应对中公平团队的图表示学习
- 批准号:
2303037 - 财政年份:2023
- 资助金额:
$ 99.97万 - 项目类别:
Standard Grant
CCRI: Planning-C: Developing a Minecraft-based Testbed for Evaluating Human-AI Teaming Research
CCRI:Planning-C:开发基于 Minecraft 的测试平台,用于评估人类-人工智能团队研究
- 批准号:
2213827 - 财政年份:2022
- 资助金额:
$ 99.97万 - 项目类别:
Standard Grant