Collaborative Research: NSF-CSIRO: RESILIENCE: Graph Representation Learning for Fair Teaming in Crisis Response
合作研究:NSF-CSIRO:RESILIENCE:危机应对中公平团队的图表示学习
基本信息
- 批准号:2303037
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The recent COVID-19 pandemic has revealed the fragility of humankind. In our highly connected world, infectious disease can swiftly transform into worldwide epidemics. A plague can rewrite history and science can limit the damage. The significance of teamwork in science has been extensively studied in the science of science literature using transdisciplinary studies to analyze the mechanisms underlying broad scientific activities. How can scientific communities rapidly form teams to best respond to pandemic crises? Artificial intelligence (AI) models have been proposed to recommend scientific collaboration, especially for those with complementary knowledge or skills. But issues related to fairness in teaming, especially how to balance group fairness and individual fairness remain challenging. Thus, developing fair AI models for recommending teams is critical for an equal and inclusive working environment. Such a need could be pivotal in the next pandemic crisis. This project will develop a decision support system to strengthen the US-Australia public health response to infectious disease outbreak. The system will help to rapidly form global scientific teams with fair teaming solutions for infectious disease control, diagnosis, and treatment. The project will include participation of underrepresented groups (Indigenous Australians and Hispanic Americans) and will provide fair teaming solutions in broad working and recruiting scenarios. This project aims to understand how scientific communities have responded to historical pandemic crises and how to best respond in the future to provide fair teaming solutions for new infectious disease crises. The project will develop a set of graph representation learning methods for fair teaming recommendation in crisis response through: 1) biomedical knowledge graph construction and learning, with novel models for emerging bio-entity extraction, relationship discovery, and fair graph representation learning for sensitive demographical attributes; 2) the recognition of fairness and the determinant of team success, with a subgraph contrastive learning-based prediction model for identifying core team units and considering trade-offs between fairness and team performance; and 3) learning to recommend fairly, with a measurement of graph-based maximum mean discrepancy, a meta learning method for fair graph representation learning, and a reinforcement learning-based search method for fair teaming recommendation. The project will support cross-disciplinary curriculum development by effectively bridging gaps in responsible AI and team science, fair project management, and risk management in science. This is a joint project between researchers from the United States and Australia and funded by the Collaboration Opportunities in Responsible and Equitable AI under the U.S. NSF and the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近的新冠肺炎疫情暴露了人类的脆弱性。在我们这个高度联系在一起的世界里,传染病可以迅速转变为世界性的流行病。一场瘟疫可以改写历史,科学可以限制破坏。团队合作在科学中的重要性已经在科学文献中得到了广泛的研究,使用跨学科的研究来分析广泛的科学活动背后的机制。科学界如何迅速组建团队以最好地应对大流行危机?已经提出了人工智能(AI)模型来推荐科学协作,特别是对于那些拥有互补知识或技能的人。但与团队公平相关的问题,特别是如何平衡群体公平和个人公平仍然具有挑战性。因此,开发公平的人工智能模型来推荐团队对于平等和包容的工作环境至关重要。在下一次大流行危机中,这种需求可能至关重要。该项目将开发一个决策支持系统,以加强美澳对传染病暴发的公共卫生反应。该系统将有助于迅速形成全球科学团队,为传染病控制、诊断和治疗提供公平的合作解决方案。该项目将包括代表性不足的群体(土著澳大利亚人和拉美裔美国人)的参与,并将在广泛的工作和招聘方案中提供公平的合作解决方案。该项目旨在了解科学界如何应对历史上的大流行危机,以及未来如何最好地应对,以便为新的传染病危机提供公平的合作解决方案。该项目将开发一套用于危机应对中公平团队推荐的图表示学习方法:1)生物医学知识图的构建和学习,为新出现的生物实体提取、关系发现和敏感人口统计属性的公平图表示学习提供新的模型;2)公平和团队成功决定因素的识别,基于子图对比学习的预测模型,用于确定核心团队单元并考虑公平和团队绩效之间的权衡;3)学习公平推荐,基于基于图的最大平均差异的度量,公平图表示学习的元学习方法,以及基于强化学习的公平团队推荐搜索方法。该项目将通过有效弥合负责任的人工智能和团队科学、公平的项目管理和科学风险管理方面的差距,支持跨学科课程开发。这是来自美国和澳大利亚的研究人员的联合项目,由美国NSF和澳大利亚联邦科学与工业研究组织(CSIRO)下的负责任和公平人工智能合作机会资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yizhou Sun其他文献
Unit Selection: Learning Benefit Function from Finite Population Data
单元选择:从有限人口数据中学习效益函数
- DOI:
10.48550/arxiv.2210.08203 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ang Li;Song Jiang;Yizhou Sun;J. Pearl - 通讯作者:
J. Pearl
User Stance Prediction via Online Behavior Mining
- DOI:
10.1145/3041021.3051144 - 发表时间:
2017-04 - 期刊:
- 影响因子:0
- 作者:
Yizhou Sun - 通讯作者:
Yizhou Sun
Getting to Know Your Data
- DOI:
10.1017/9781108683791.007 - 发表时间:
2019-09 - 期刊:
- 影响因子:0
- 作者:
Yizhou Sun - 通讯作者:
Yizhou Sun
LCARS: A Spatial Item Recommender System
LCARS:空间项目推荐系统
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:5.6
- 作者:
Bin Cui;Yizhou Sun;Zhiting Hu;Ling Chen - 通讯作者:
Ling Chen
Yizhou Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yizhou Sun', 18)}}的其他基金
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: StructNet: Constructing and Mining Structure-Rich Information Networks for Scientific Research
III:媒介:协作研究:StructNet:为科学研究构建和挖掘结构丰富的信息网络
- 批准号:
1705169 - 财政年份:2017
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
CAREER: Mining and Exploring Heterogeneous Information Networks with Social Factors
职业:挖掘和探索具有社会因素的异构信息网络
- 批准号:
1741634 - 财政年份:2016
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
CAREER: Mining and Exploring Heterogeneous Information Networks with Social Factors
职业:挖掘和探索具有社会因素的异构信息网络
- 批准号:
1453800 - 财政年份:2015
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333889 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333888 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412550 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant