EAGER: Creating Speech Synthesizers for Low Resource Languages

EAGER:为低资源语言创建语音合成器

基本信息

  • 批准号:
    1548092
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Recent advances in speech technology have resulted in wide use of Spoken Dialogue Systems (SDS) such as Siri (iPhone) and Voice Search (Android). These systems support major improvements in information access by voice for High Resource Languages (HRLS) such as English, French, Mandarin, Japanese, and Spanish. For these HRLs, researchers have built dictionaries, parsers, part-of-speech taggers, language models, search engines, and machine translation engines to support speech technologies. However, there are ~6500 world languages, including Tagalog, Tamil, Swahili, Vietnamese and Pashto, many of which are spoken by millions of people, but which do not enjoy the computational resources necessary to build SDS. These are termed Low Resource Languages (LRLs). Speakers of LRLs do not enjoy the same communication and search capabilities speakers of HRLs do. In particular, there is little research and few resources supporting the development of Text-to-Speech Synthesis (TTS) systems to produce Siri-like speech for SDS in these languages.New paradigms for TTS synthesis are now being developed which make it theoretically possible to build systems quickly and cheaply without recording large, special-purpose speech corpora using data recorded for other purposes such as training speech recognizers. This EArly Grant for Exploratory Research investigates the use of these techniques to produce TTS systems for LRL. Three major problems will be explored: 1) Can one develop automatic techniques to filter found data (removing data that is too loud, too noisy or disfluent, for example) to obtain intelligible and natural-sounding results? 2) Can one obtain pronunciation dictionaries from online sources that, with crowd-sourced validation, suffice to generate intelligible and natural speech? 3) Can one use clustering techniques on found data to identify pitch contours that can be crowd-sourced to identify meanings such as question vs. statement contours without prior knowledge of a language's phonology? These methods are tested on two languages: Standard American English, to develop the techniques rapidly, and a language similar in writing system and phonology, Lithuanian, to evaluate on an initial LRL. Both evaluations are made in terms of intelligibility and naturalness using crowd-sourcing techniques with native speakers of each language. The ultimate goal of this exploratory work will be to test these techniques on a broad variety of LRLs which have been collected for purposes of developing speech recognizers.
语音技术的最新进展导致了语音对话系统(SDS)的广泛使用,例如Siri(iPhone)和语音搜索(Android)。 这些系统支持通过高资源语言(HRLS)(如英语,法语,汉语,日语和西班牙语)的语音信息访问的重大改进。 对于这些HRL,研究人员已经建立了字典,解析器,词性标记器,语言模型,搜索引擎和机器翻译引擎来支持语音技术。 然而,世界上有大约6500种语言,包括泰米尔语、斯瓦希里语、越南语和普什图语,其中许多语言被数百万人使用,但它们并不享有构建SDS所需的计算资源。这些语言被称为低资源语言(LRL)。 LRL的发言者不享有与HRL的发言者相同的通信和搜索能力。 特别是,有很少的研究和资源支持开发的文本到语音合成(TTS)系统,以产生类似的语音SDS在这些languages.TTS合成新的范例,现在正在开发,这使得它在理论上可以建立系统快速和廉价,而无需记录大型,特殊用途的语音语料库使用的数据记录用于其他目的,如培训语音识别器。 EArly的探索性研究资助旨在研究如何使用这些技术为LRL生产TTS系统。 我们将探讨三个主要问题:1)是否可以开发自动技术来过滤找到的数据(例如,删除太大声、太嘈杂或不流利的数据),以获得可理解和听起来自然的结果?2)人们能否从在线资源中获得发音词典,并通过众包验证,足以生成可理解和自然的语音? 3)可以使用聚类技术对发现的数据来识别音高轮廓,可以众包,以确定意义,如问题与声明轮廓没有事先了解一种语言的音韵? 这些方法在两种语言上进行测试:标准美式英语,以快速开发技术,以及在书写系统和语音学上类似的语言,立陶宛语,以评估初始LRL。这两项评估都是在可理解性和自然性方面进行的,使用的是每种语言的母语使用者的众包技术。 这项探索性工作的最终目标将是测试这些技术在各种各样的LRL已收集的目的,开发语音识别器。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julia Hirschberg其他文献

A Novel Methodology for Developing Automatic Harassment Classifiers for Twitter
一种为 Twitter 开发自动骚扰分类器的新方法
  • DOI:
    10.18653/v1/2020.alw-1.2
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ishaan Arora;Julia Guo;Sarah Ita Levitan;Susan E Mcgregor;Julia Hirschberg
  • 通讯作者:
    Julia Hirschberg
Detecting Inappropriate Clarification Requests in Spoken Dialogue Systems
检测口语对话系统中不适当的澄清请求
  • DOI:
    10.3115/v1/w14-4331
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alex Liu;Rose Sloan;M. Then;Svetlana Stoyanchev;Julia Hirschberg;Elizabeth Shriberg
  • 通讯作者:
    Elizabeth Shriberg
The Prosody of Backchannels in American English
美式英语中 Backchannels 的韵律
  • DOI:
    10.7916/d8ww7s1p
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    S. Benus;Agustin Gravano;Julia Hirschberg
  • 通讯作者:
    Julia Hirschberg
A Speech-First Model for Repair Detection and Correction
用于修复检测和纠正的语音优先模型
Intonation and discourse processing
语调和话语处理
  • DOI:
    10.7916/d8pv6tp1
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Julia Hirschberg;J. Venditti
  • 通讯作者:
    J. Venditti

Julia Hirschberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julia Hirschberg', 18)}}的其他基金

EAGER: Identifying and Producing Code-Switching in Languages from Spoken, Lexical and Socio-linguistic Features
EAGER:根据口语、词汇和社会语言特征识别和产生语言中的语码转换
  • 批准号:
    2327564
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
RI: Small: Creating Text-to-Speech Synthesis for Low Resource Languages
RI:小型:为低资源语言创建文本到语音合成
  • 批准号:
    1717680
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CI-P: Reciprosody - A Repository for Prosodically Annotated Material
合作研究:CI-P:Reciprosody - 韵律注释材料存储库
  • 批准号:
    1205450
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Using Computational Tools to Facilitate Corpus Collection and Language Use in Arrernte (aer)
使用计算工具促进 Arrernte (aer) 中的语料库收集和语言使用
  • 批准号:
    1160700
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
IGERT: From Data to Solutions: A New PhD Program in Transformational Data & Information Sciences Research and Innovation
IGERT:从数据到解决方案:一个新的转型数据博士项目
  • 批准号:
    1144854
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CI-P: Collaborative Research: Summarizing Opinion and Speaker Attitude in Speech
CI-P:协作研究:总结观点和演讲者在演讲中的态度
  • 批准号:
    1059260
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: Using Social Media and Crowdsourcing to Create a New Affect Dictionary
EAGER:利用社交媒体和众包创建新的情感词典
  • 批准号:
    1145505
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: From Text to Pictures
RI:媒介:协作研究:从文本到图片
  • 批准号:
    0904361
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
RI-Medium: Collaborative: Corpus-Based Studies of Lexical, Acoustic-Prosodic, and Discourse Entrainment in Spoken Dialogue
RI-Medium:协作:基于语料库的口语对话中的词汇、声学韵律和话语夹带研究
  • 批准号:
    0803148
  • 财政年份:
    2008
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Doctoral Consortium at The Human Language Technology Conference - North American chapter of the Association for Computational Linguistics annual meeting (NAACL HLT) 2007.
人类语言技术会议博士联盟 - 计算语言学协会年会 (NAACL HLT) 2007 年北美分会。
  • 批准号:
    0707305
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER: Creating a Composite EL Nino Record from the Lowland Neotropics
EAGER:创造低地新热带区综合厄尔尼诺记录
  • 批准号:
    2417794
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Creating a Path to Achieving Success and Sense of Belonging in Computer Science
创造一条在计算机科学领域取得成功和归属感的道路
  • 批准号:
    2322665
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
NSF Engines Development Award: Creating climate-resilient opportunities for plant systems (NC)
NSF 发动机开发奖:为工厂系统创造气候适应机会 (NC)
  • 批准号:
    2315399
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Cooperative Agreement
Creating a reflective, assessment workbook for University teachers to enhance teaching techniques and improve student engagement, by incorporating International Baccalaureate (IB) teaching practices
通过纳入国际文凭 (IB) 教学实践,为大学教师创建反思性评估工作簿,以提高教学技巧并提高学生参与度
  • 批准号:
    24K06129
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creating pH-sensitive self-healing concrete using sludge waste for sewers
利用下水道污泥废物制造 pH 敏感的自修复混凝土
  • 批准号:
    DP230100688
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Projects
Creating cosmopolitan rural communities through Japanese crafts: a comparative perspective with Portugal and Brazil
通过日本手工艺创建国际化农村社区:与葡萄牙和巴西的比较视角
  • 批准号:
    24K21000
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Observing, Creating and Addressing Topological Spin Textures in a Monolayer XY Magnet
观察、创建和解决单层 XY 磁体中的拓扑自旋纹理
  • 批准号:
    EP/Y023250/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
  • 批准号:
    2339197
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Creating a Grow-Your-Own Program for Recruiting and Supporting Computer Science Teacher Candidates in Rural Georgia
创建一个自己成长的计划,用于招募和支持佐治亚州农村地区的计算机科学教师候选人
  • 批准号:
    2344678
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Creating a Teen Science Cafe Movement
创建青少年科学咖啡馆运动
  • 批准号:
    2424451
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了