RI-Medium: Collaborative: Corpus-Based Studies of Lexical, Acoustic-Prosodic, and Discourse Entrainment in Spoken Dialogue
RI-Medium:协作:基于语料库的口语对话中的词汇、声学韵律和话语夹带研究
基本信息
- 批准号:0803148
- 负责人:
- 金额:$ 44.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Participants in human-human conversation often entrain to one another, adopting the vocabulary and other behaviors of their partners.Evidence of this has been found from laboratory studies and observations of real life situations. We are investigating many types of entrainment in two large corpora of human-human conversations to improve system behavior in Spoken Dialogue Systems (SDS). We want to discover which types of entrainment occur generally across speakers and which seem to be speaker-specific, which types of entrainment can be reliably linked to task success and perceived naturalness, and which types of entrainment can be automatically modeled in SDS.Our research has importance for the construction of better SDS.Currently, research SDS have attempted to entrain users to system vocabularies to improve speech recognition accuracy: Since users are likely to employ the same vocabulary in their answers that systems use in their queries, systems have a better chance of recognizing user input correctly if they can predict word usage. However, there has been little attempt to create SDS that entrain to user behavior, despite evidence that human beings rate humans and systems that behave more like them more highly than those that do not. Our work focuses on determining which types of system entrainment to users will be most important to users and most feasible for SDS. Our results will be disseminated through papers and presentations at speech and language conferences. We will also provide publicly available annotated corpora for future research by others.
在人与人之间的对话中,参与者经常相互牵连,采用对方的词汇和其他行为。这一点已经从实验室研究和对现实生活情景的观察中找到了证据。我们正在研究两个大型人与人对话语料库中的多种类型的夹带,以改善口语对话系统(SD)中的系统行为。我们希望发现哪些类型的夹带一般发生在说话人之间,哪些类型似乎是特定于说话者的,哪些类型的夹带可以可靠地与任务成功和感知的自然度联系在一起,以及哪些类型的夹带可以在SD中自动建模。我们的研究对于构建更好的SD非常重要。目前,研究SD已经尝试将用户引入系统词汇以提高语音识别精度:由于用户可能在他们的答案中使用系统在他们的查询中使用的相同词汇,如果系统能够预测单词使用,系统有更好的机会正确识别用户输入。然而,很少有人尝试创建会影响用户行为的SD,尽管有证据表明,人类对行为更像他们的人和系统的评价比那些不像他们的人更高。我们的工作重点是确定哪些类型的系统对用户来说是最重要的,对用户来说是最可行的。我们的成果将通过在演讲和语言会议上发表的论文和演讲来传播。我们还将提供公开可用的带注释的语料库,以供其他人将来研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Hirschberg其他文献
Detecting Inappropriate Clarification Requests in Spoken Dialogue Systems
检测口语对话系统中不适当的澄清请求
- DOI:
10.3115/v1/w14-4331 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Alex Liu;Rose Sloan;M. Then;Svetlana Stoyanchev;Julia Hirschberg;Elizabeth Shriberg - 通讯作者:
Elizabeth Shriberg
A Novel Methodology for Developing Automatic Harassment Classifiers for Twitter
一种为 Twitter 开发自动骚扰分类器的新方法
- DOI:
10.18653/v1/2020.alw-1.2 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ishaan Arora;Julia Guo;Sarah Ita Levitan;Susan E Mcgregor;Julia Hirschberg - 通讯作者:
Julia Hirschberg
The Prosody of Backchannels in American English
美式英语中 Backchannels 的韵律
- DOI:
10.7916/d8ww7s1p - 发表时间:
2007 - 期刊:
- 影响因子:3.6
- 作者:
S. Benus;Agustin Gravano;Julia Hirschberg - 通讯作者:
Julia Hirschberg
Training intonational phrasing rules automatically for English and Spanish text-to-speech
自动训练英语和西班牙语文本转语音的语调短语规则
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:3.2
- 作者:
Julia Hirschberg;P. Prieto - 通讯作者:
P. Prieto
Disambiguating Cue Phrases in Text and Speech
消除文本和语音中提示短语的歧义
- DOI:
10.3115/997939.997983 - 发表时间:
1990 - 期刊:
- 影响因子:0
- 作者:
D. Litman;Julia Hirschberg - 通讯作者:
Julia Hirschberg
Julia Hirschberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Hirschberg', 18)}}的其他基金
EAGER: Identifying and Producing Code-Switching in Languages from Spoken, Lexical and Socio-linguistic Features
EAGER:根据口语、词汇和社会语言特征识别和产生语言中的语码转换
- 批准号:
2327564 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别:
Standard Grant
RI: Small: Creating Text-to-Speech Synthesis for Low Resource Languages
RI:小型:为低资源语言创建文本到语音合成
- 批准号:
1717680 - 财政年份:2017
- 资助金额:
$ 44.19万 - 项目类别:
Standard Grant
EAGER: Creating Speech Synthesizers for Low Resource Languages
EAGER:为低资源语言创建语音合成器
- 批准号:
1548092 - 财政年份:2015
- 资助金额:
$ 44.19万 - 项目类别:
Standard Grant
Collaborative Research: CI-P: Reciprosody - A Repository for Prosodically Annotated Material
合作研究:CI-P:Reciprosody - 韵律注释材料存储库
- 批准号:
1205450 - 财政年份:2012
- 资助金额:
$ 44.19万 - 项目类别:
Standard Grant
Using Computational Tools to Facilitate Corpus Collection and Language Use in Arrernte (aer)
使用计算工具促进 Arrernte (aer) 中的语料库收集和语言使用
- 批准号:
1160700 - 财政年份:2012
- 资助金额:
$ 44.19万 - 项目类别:
Standard Grant
IGERT: From Data to Solutions: A New PhD Program in Transformational Data & Information Sciences Research and Innovation
IGERT:从数据到解决方案:一个新的转型数据博士项目
- 批准号:
1144854 - 财政年份:2012
- 资助金额:
$ 44.19万 - 项目类别:
Continuing Grant
CI-P: Collaborative Research: Summarizing Opinion and Speaker Attitude in Speech
CI-P:协作研究:总结观点和演讲者在演讲中的态度
- 批准号:
1059260 - 财政年份:2011
- 资助金额:
$ 44.19万 - 项目类别:
Standard Grant
EAGER: Using Social Media and Crowdsourcing to Create a New Affect Dictionary
EAGER:利用社交媒体和众包创建新的情感词典
- 批准号:
1145505 - 财政年份:2011
- 资助金额:
$ 44.19万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: From Text to Pictures
RI:媒介:协作研究:从文本到图片
- 批准号:
0904361 - 财政年份:2009
- 资助金额:
$ 44.19万 - 项目类别:
Standard Grant
Doctoral Consortium at The Human Language Technology Conference - North American chapter of the Association for Computational Linguistics annual meeting (NAACL HLT) 2007.
人类语言技术会议博士联盟 - 计算语言学协会年会 (NAACL HLT) 2007 年北美分会。
- 批准号:
0707305 - 财政年份:2007
- 资助金额:
$ 44.19万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别:
Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312373 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
- 批准号:
2312955 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
- 批准号:
2313137 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313150 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别:
Continuing Grant