EAGER/Collaborative Research: Challenging the Cognitive-Control Divide
EAGER/协作研究:挑战认知控制鸿沟
基本信息
- 批准号:1548514
- 负责人:
- 金额:$ 17.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This EArly-concept Grant for Exploratory Research (EAGER) collaborative research project is between an expert in robotics and control theory and an expert in experimental and computational motor neuroscience. It bridges cognitive science, experimental psychology and control engineering. The intellectual premise of the work is that a quantitative theory of human cognition may be built on top of limiting cases of human motor function. This premise lays the foundation for the development of a comprehensive quantitative theory of control-relevant cognition. The result will be an invaluable tool for the human-friendly design of complex motion control systems. Control strategies based on these fundamental objects would be more intuitively understandable by human operators, including prediction of impending failure. Extension of the results beyond motion control provide a new class of knowledge-processing systems capable of more natural interactions with humans. The objective of this project is to articulate and test a quantitative, control-relevant theory of human cognition, to address a growing divide between cognitive science and control theory. The core hypothesis is that cognitive functions emerged from and are constrained by neural structures used for motor control. Complex motor actions are composed from a limited "library" of dynamic primitives, defined as attractors (e.g. fixed points, limit cycles, etc.). The project postulates that a similar composition of dynamic primitives underlies cognitive processes and that quantitative details may be obtained by re-purposing dynamic primitives found in motor behavior, especially in the manipulation of complex objects such as tools where the link between motor and cognitive function may be strongest. The project is based on a novel series of experiments: A data series is generated by various human participants physically manipulating a complex dynamic object. Alternative data sets are generated by computer simulation of movements to the same targets that minimize mean-squared applied force. Random fluctuations generated by low-pass filtered zero-mean Gaussian white noise and of magnitude comparable to the fluctuations in human performance are added to the simulated force and motion time-series. Without being told the origin, a second set of subjects are presented with the results as evolving abstract time-series and asked to predict their outcome. Subsequently, they are asked to generate a control input for the abstract system, based on their experience, to accomplish a specified task. According to the hypothesis, the subjects will more successfully predict the outcome of human-controlled systems than the synthetic systems, and will generate control inputs that more closely match the human-controlled system inputs.
这个探索性研究(EAGER)合作研究项目是由一位机器人和控制理论专家和一位实验和计算运动神经科学专家共同完成的。它是认知科学、实验心理学和控制工程的桥梁。这项工作的智力前提是,人类认知的定量理论可以建立在人类运动功能的有限案例之上。这一前提为控制相关认知的全面定量理论的发展奠定了基础。研究结果将为复杂运动控制系统的人性化设计提供宝贵的工具。基于这些基本目标的控制策略将更容易被人类操作员直观地理解,包括对即将发生的故障的预测。将结果扩展到运动控制之外,提供了一类新的知识处理系统,能够与人类进行更自然的交互。该项目的目标是阐明和测试定量的、与控制相关的人类认知理论,以解决认知科学和控制理论之间日益增长的分歧。核心假设是,认知功能来自用于运动控制的神经结构,并受其约束。复杂的运动动作由有限的动态原语“库”组成,定义为吸引子(例如不动点,极限环等)。该项目假设,类似的动态原语构成了认知过程的基础,并且可以通过重新利用运动行为中发现的动态原语来获得定量细节,特别是在操纵复杂物体(如运动和认知功能之间的联系可能最强的工具)时。该项目基于一系列新颖的实验:由不同的人类参与者物理操作复杂的动态对象生成一系列数据。替代数据集是通过计算机模拟相同目标的运动来生成的,以最小化施加的均方力。在模拟的力和运动时间序列中加入低通滤波后的零均值高斯白噪声产生的随机波动,其幅度与人类表现的波动相当。在不被告知起源的情况下,第二组受试者将结果作为演化的抽象时间序列呈现给他们,并要求他们预测结果。随后,他们被要求根据他们的经验为抽象系统生成控制输入,以完成指定的任务。根据这一假设,受试者将比合成系统更成功地预测人类控制系统的结果,并将产生更接近人类控制系统输入的控制输入。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dagmar Sternad其他文献
Robot Motion Affects Human Force Regulation in Physical Human-Robot Interaction
机器人运动影响人机物理交互中的人力调节
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mahdiar Edraki;Pauline Maurice;Dagmar Sternad - 通讯作者:
Dagmar Sternad
Hand pose selection in a bimanual fi ne-manipulation task
双手精细操作任务中的手部姿势选择
- DOI:
10.1140/epjb/e2007-00333-x - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Kunpeng Yao;Dagmar Sternad;A. Billard - 通讯作者:
A. Billard
Learning and transfer of complex motor skills in virtual reality: a perspective review
- DOI:
10.1186/s12984-019-0587-8 - 发表时间:
2019-10-18 - 期刊:
- 影响因子:5.200
- 作者:
Danielle E. Levac;Meghan E. Huber;Dagmar Sternad - 通讯作者:
Dagmar Sternad
Time-warping analysis for biological signals: methodology and application
生物信号的时间扭曲分析:方法与应用
- DOI:
10.1038/s41598-025-95108-5 - 发表时间:
2025-04-05 - 期刊:
- 影响因子:3.900
- 作者:
Aleksei Krotov;Reza Sharif Razavian;Mohsen Sadeghi;Dagmar Sternad - 通讯作者:
Dagmar Sternad
Modeling of a Bullwhip Using a NARX Network for Robot Control
使用 NARX 网络进行机器人控制的牛鞭建模
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Mahdiar Edraki;Reza Sharif;Mohsen Sadeghi;A. Krotov;Dagmar Sternad - 通讯作者:
Dagmar Sternad
Dagmar Sternad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dagmar Sternad', 18)}}的其他基金
Collaborative Research: SCH: Movement as a Vital Sign in Preterm Infants
合作研究:SCH:运动作为早产儿的生命体征
- 批准号:
2123972 - 财政年份:2021
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: Emergent motor timing influences perceptual timing
合作研究:紧急运动时间影响知觉时间
- 批准号:
2043318 - 财政年份:2021
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: Learning to Control Dynamically Complex Objects
协作研究:学习控制动态复杂对象
- 批准号:
1825942 - 财政年份:2018
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
CRCNS US-German-Israeli Collaborative Research Proposal: Hierarchical Coordination of Complex Actions
CRCNS 美国-德国-以色列合作研究提案:复杂行动的分层协调
- 批准号:
1723998 - 财政年份:2017
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
NRI: Collaborative Research: Towards Robots with Human Dexterity
NRI:协作研究:迈向具有人类灵活性的机器人
- 批准号:
1637854 - 财政年份:2017
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Dynamics of Action and Perception in a Rhythmic Task
有节奏的任务中行动和感知的动态
- 批准号:
0904464 - 财政年份:2008
- 资助金额:
$ 17.11万 - 项目类别:
Continuing Grant
Dynamics of Action and Perception in a Rhythmic Task
有节奏的任务中行动和感知的动态
- 批准号:
0450218 - 财政年份:2005
- 资助金额:
$ 17.11万 - 项目类别:
Continuing Grant
Discrete and Rhythmic Dynamics in Multipoint Movements
多点运动中的离散和节奏动力学
- 批准号:
0096543 - 财政年份:2001
- 资助金额:
$ 17.11万 - 项目类别:
Continuing Grant
Conference Progress in Motor Control-II: August 1999: University Park, PA
电机控制会议进展-II:1999 年 8 月:宾夕法尼亚州大学公园
- 批准号:
9813994 - 财政年份:1999
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Multi-Joint Dynamics: A Model for Discrete and Rhythmic Coordination Tasks
多关节动力学:离散和节奏协调任务的模型
- 批准号:
9710312 - 财政年份:1997
- 资助金额:
$ 17.11万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant