Dissecting how protein degradation couples the circadian clock to downstream processes

剖析蛋白质降解如何将生物钟与下游过程结合起来

基本信息

  • 批准号:
    1548538
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

For most living organisms, specific biological processes must happen at specific times of day. For example, in plants, photosynthesis, the process that converts light energy and carbon dioxide into sugar, must be timed to daylight hours. Many additional important processes are parsed out by a mechanism that controls daily timing called the circadian clock. A lot is known about genes and proteins that make up the circadian clock in plants; however how the circadian clock actually controls particular biological processes such as photosynthesis is not known. This proposal outlines experiments that will discover connections between the circadian clock and some of these timed biological processes. Understanding these connections will help us make crop plants that produce more energy and are resistant to changes in the environment, such as those caused by global climate change. Much is known about the transcriptional connections between the circadian clock and downstream biological processes, but far fewer non-transcriptional connections have been made. One example is the coincidence model for seasonal flowering which exemplifies a protein degradation-based mechanism for coupling the clock to seasonal flowering. In this system a circadian clock-controlled F-box protein times the degradation of a key regulator of flowering. Beyond this example, there are 32 additional circadian clock-controlled F-box proteins with little or no known biological function. To fully understand the protein degradation-based couplings between the circadian clock and downstream processes, the functions of these F-box proteins must be understood. In this proposal a strategy is defined for inverting the function of the 32 circadian clock-controlled F-box proteins to study their functions. The completion of the experiments in this proposal will provide a critical toolset and dataset to investigate protein degradation-based coupling mechanisms between the circadian clock and downstream biological processes. In addition, the proposed research will promote training and scientific interaction at various levels of scientific discovery. 1) Undergraduates, graduate students, post-doctoral researchers, and visiting scholars will be trained in plant genetics, molecular biology, and biochemistry in the laboratory; 2) A monthly plant ?showcase? will continue to bring together the plant science faculty, students, and personnel at Yale with New Haven high school and middle school students to foster interest in plant biology and STEM education with young scientists; 3) The proposed work is intended for direct application to crop species and will be a powerful tool to introduce environmental plasticity in order to respond to global environment changes; and 4) Dissemination of the work to the general public will be achieved using social media. The lab maintains a Twitter account (@GendronLab) and the presentations of the plant showcase are published as podcasts that are freely downloadable (http://greencafe.yale.edu). This is intended to increase advocacy for science with a focus on plant science.
对于大多数生物来说,特定的生物过程必须在一天中的特定时间发生。例如,在植物中,光合作用,将光能和二氧化碳转化为糖的过程,必须计时到白天。许多其他重要的过程是由一种叫做生物钟的控制日常时间的机制来完成的。我们对构成植物生物钟的基因和蛋白质了解很多;然而,生物钟实际上如何控制特定的生物过程,如光合作用,尚不清楚。本提案概述了将发现生物钟和这些定时生物过程之间联系的实验。了解这些联系将有助于我们生产出能产生更多能量的作物,并对环境变化(如全球气候变化造成的环境变化)具有抵抗力。我们对生物钟和下游生物过程之间的转录联系了解甚多,但对非转录联系了解甚少。一个例子是季节性开花的巧合模型,它举例说明了一种基于蛋白质降解的机制,将时钟与季节性开花耦合在一起。在这个系统中,生物钟控制的F-box蛋白乘以开花关键调节因子的降解。除了这个例子之外,还有32种额外的生物钟控制的F-box蛋白,它们很少或根本没有已知的生物学功能。为了充分了解生物钟与下游过程之间基于蛋白质降解的耦合,必须了解这些F-box蛋白的功能。在这个提议中,我们定义了一个策略来反转32个生物钟控制的F-box蛋白的功能,以研究它们的功能。本提案中实验的完成将为研究生物钟与下游生物过程之间基于蛋白质降解的耦合机制提供关键的工具集和数据集。此外,拟议的研究将促进各级科学发现的培训和科学互动。1)在实验室培养植物遗传学、分子生物学、生物化学等方面的本科生、研究生、博士后和访问学者;2)每月一次的植物展示会?将继续将耶鲁大学的植物科学教师、学生和工作人员与纽黑文高中和初中的学生聚集在一起,培养年轻科学家对植物生物学和STEM教育的兴趣;3)本研究可直接应用于作物物种,为引入环境可塑性以应对全球环境变化提供有力工具;4)通过社交媒体向公众传播作品。该实验室有一个Twitter账户(@GendronLab),植物展示的演示以播客的形式发布,可免费下载(http://greencafe.yale.edu)。这是为了增加对以植物科学为重点的科学的宣传。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Gendron其他文献

Joshua Gendron的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joshua Gendron', 18)}}的其他基金

Collaborative Research: Discovery of a negative feedback mechanism that controls karrikin and KAI2 ligand metabolism in plants
合作研究:发现植物中控制 karrikin 和 KAI2 配体代谢的负反馈机制
  • 批准号:
    1856452
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似海外基金

Understanding how exocrine-derived signals promote beta cell growth
了解外分泌信号如何促进 β 细胞生长
  • 批准号:
    10750765
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
Unraveling how Lipophilic Modulators Alter pLGIC Function via Interactions with the M4 Transmembrane Helix
揭示亲脂性调节剂如何通过与 M4 跨膜螺旋相互作用改变 pLGIC 功能
  • 批准号:
    10785755
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Towards the understanding of how chaperones function and prevent amyloidogenic diseases
了解伴侣如何发挥作用并预防淀粉样蛋白形成疾病
  • 批准号:
    10734397
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
  • 批准号:
    10722452
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
How Serine-129 Phosphorylation Status Affects the Spreading of α-Synuclein Pathology in Vivo: a Study in Knock-in Animals
Serine-129 磷酸化状态如何影响体内 α-突触核蛋白病理学的传播:敲入动物研究
  • 批准号:
    10736995
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Assessing how Prenatal Phthalate Exposure Disrupts Placental Transcriptional Regulation and Contributes to Changes in Gestational Length
评估产前邻苯二甲酸盐暴露如何扰乱胎盘转录调节并导致妊娠长度的变化
  • 批准号:
    10578186
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Understanding how social interactions influence reward-seeking behaviors: Developmental mechanisms
了解社交互动如何影响寻求奖励的行为:发展机制
  • 批准号:
    10716898
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Exploring how cells generate and release distinct subpopulations of dense-core vesicles
探索细胞如何产生和释放不同的致密核心囊泡亚群
  • 批准号:
    10679873
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Understanding how activity drives diverse spine structural interactions
了解活动如何驱动不同的脊柱结构相互作用
  • 批准号:
    10840581
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
How to build a protein factory? Linking structure and function of the plant endoplasmic reticulum
如何建造蛋白质工厂?
  • 批准号:
    BB/X006417/1
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了