Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
基本信息
- 批准号:10722452
- 负责人:
- 金额:$ 12.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAffectAffinityAnimalsAstrocytesAuxinsBHLH ProteinBehaviorBioinformaticsCellsCollaborationsComplementComplexConsultationsCuesDecision MakingDevelopmentDimerizationDiseaseElementsEmbryoEnabling FactorsEndowmentEnvironmentFibroblast Growth FactorGenerationsGenesGenetic TranscriptionGoalsHelix-Turn-Helix MotifsHuman DevelopmentImageIn VitroIndividualInvestigationKnowledgeLIF geneLinkMalignant NeoplasmsMeasurementMeasuresMediatingMentorsMentorshipMicroscopyMonitorMultipotent Stem CellsMusNeuronsOligodendrogliaOutcomePathologicPhasePhysiologicalPlayPostdoctoral FellowProcessProtein AnalysisProteinsRNAReagentRegulator GenesReporterRoleSignal PathwaySignal TransductionSpinal CordSystemTechniquesTestingTherapeuticTissue EngineeringTissuesWNT Signaling PathwayWorkYeastsZebrafishcell typedesigndevelopmental diseasedimerexperimental studyextracellularfluorescence imagingimprovedin vivoinsightknockout genemutantnerve stem cellneuralneural plateneurodevelopmentnovelprogramsrepairedresponsesignal processingstem cellssynthetic biology
项目摘要
Project Summary
Multipotent stem cells in animals integrate information from various extracellular signals to choose between fates.
Signal integration enables robust, context-specific decisions, while errors in this process underlie developmental
disorders and cancers. To be effective, signal integration must be tightly linked to coordination between fates,
i.e., the activation of a target fate program and inactivation of alternative fates. How is this achieved?
My recent postdoctoral work suggested that, in cultured neural stem cells (NSCs), a gene regulatory
circuit of basic helix-loop-helix (bHLH) transcription factors enables the integration of two signals to
simultaneously activate astrocyte differentiation and suppress alternative fates. Transcriptional interactions
among bHLHs are an important component of this circuit, but they alone could not account for signal integration.
I hypothesize that two other key features of bHLHs play an essential role: protein-level dimerization and
oscillatory dynamics of bHLHs. Here, I will investigate how these features contribute to signal integration by the
NSC circuit using quantitative measurements of dimerization and dynamics complemented by precise
perturbations. Moreover, I will analyze the role of a bHLH circuit in the developing zebrafish spinal cord to
understand how principles of circuit function obtained using in vitro systems extend to an in vivo context.
In Aim 1, I will investigate the role of bHLH dimerization by designing novel dimerization mutants based
on computational sequence co-evolution analysis (in collaboration with Dr. Debora Marks), validating them using
a quantitative yeast-based measurement platform that I have developed, and analyzing their impact on signal
integration in NSCs. In Aim 2, I will use a combination of timelapse imaging and multiplexed RNA-FISH in NSCs
to analyze how oscillatory dynamics in the bHLH Hes1 is controlled by upstream signals and subsequently
impacts other bHLHs in the circuit as well as downstream fate outcomes. I will also assess how ectopically
modulating Hes1 dynamics affects circuit behavior. In Aim 3, I will determine whether and how a bHLH circuit in
stem cells of the zebrafish neural plate integrates two developmental signals to enable an early fate choice in
this tissue. Specifically, I will first characterize how signaling activity in individual cells impacts their fate using a
combination of in vivo timelapse microscopy and targeted signaling perturbations. I will then investigate how
interactions in the bHLH circuit mediate the effects of signals on fate choice.
bHLH factors are expressed in most stem cells during development and in adult tissues. bHLH circuits
could therefore play a ubiquitous role in integrating signaling information to enable cell fate decisions. This work
seeks to broadly understand how they function, leveraging quantitative approaches both in vitro and in vivo with
guidance from my mentors Dr. Galit Lahav and Dr. Sean Megason. This investigation will clarify the basis of fate
choice in diverse tissues and provide opportunities to ‘re-wire’ this process to improve the generation of desired
cell types for tissue engineering or to treat pathological fate choices in disease contexts.
项目摘要
动物体内的多能干细胞整合来自各种细胞外信号的信息,在命运之间做出选择。
信号整合使强大的,特定于上下文的决策成为可能,而这一过程中的错误是发展的基础。
疾病和癌症。为了有效,信号整合必须与命运之间的协调紧密相连,
也就是说,目标命运程序的激活和替代命运的失活。这是如何实现的?
我最近的博士后工作表明,在培养的神经干细胞(NSC)中,
碱性螺旋-环-螺旋(bHLH)转录因子的回路使得两个信号的整合成为可能,
同时激活星形胶质细胞分化并抑制替代命运。转录相互作用
在bHLH之间,是该电路的重要组成部分,但它们本身不能解释信号积分。
我假设bHLHs的另外两个关键特征起着重要作用:蛋白质水平的二聚化和
bHLH的振荡动力学。在这里,我将研究这些功能如何有助于信号集成的
NSC电路使用二聚化和动力学的定量测量,
扰动此外,我将分析bHLH回路在发育中的斑马鱼脊髓中的作用,
理解如何使用体外系统获得电路功能的原理扩展到体内环境。
在目标1中,我将通过设计新的二聚化突变体来研究bHLH二聚化的作用,
关于计算序列协同进化分析(与Debora Marks博士合作),使用
我开发的一个基于酵母的定量测量平台,并分析它们对信号的影响。
NSC的整合。在目标2中,我将在神经干细胞中使用时间推移成像和多重RNA-FISH的组合
分析bHLH Hes 1中的振荡动力学是如何由上游信号控制的,
影响回路中的其他bHLH以及下游命运结果。我也会评估异位
调节Hes 1动力学影响电路行为。在目标3中,我将确定bHLH电路是否以及如何在
斑马鱼神经板的干细胞整合了两种发育信号,
这个组织。具体来说,我将首先描述单个细胞中的信号活动如何影响它们的命运,
体内时移显微术和靶向信号扰动的组合。然后我会调查
bHLH回路中的相互作用介导了信号对命运选择的影响。
bHLH因子在发育过程中的大多数干细胞和成体组织中表达。bHLH电路
因此,在整合信号传导信息以实现细胞命运决定方面可以发挥普遍存在的作用。这项工作
旨在广泛了解它们的功能,利用体外和体内的定量方法,
来自我的导师Galit Lahav博士和Sean Megason博士的指导。这次调查将澄清命运的基础
选择在不同的组织,并提供机会,以'重新布线'这一过程,以改善所需的产生
用于组织工程或治疗疾病背景下的病理命运选择的细胞类型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nagarajan Nandagopal其他文献
Nagarajan Nandagopal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 12.47万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 12.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 12.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 12.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




