Higher-dimensional Heegaard Floer homology
高维 Heegaard Florer 同源性
基本信息
- 批准号:1549147
- 负责人:
- 金额:$ 27.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-20 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Principal Investigator will undertake a study of 3-, 4-, and higher-dimensional spaces using a theory called "higher-dimensional Heegaard Floer homology'' which the PI is developing with his collaborator Vincent Colin. These spaces will locally be similar to the standard (Euclidean) n-dimensional spaces and may be very complicated globally, but a local observer cannot tell the difference, just as an ant cannot tell whether it is sitting on a flat plane or a very large sphere. Higher-dimensional Heegaard Floer homology is defined through contact and symplectic geometry, which in turn are closely related to mathematical physics and string theory. These studies in higher dimensions should in turn contribute significantly towards our understanding of low-dimensional (i.e., 3- and 4-dimensional) shapes, from the knotting of DNA at the microscopic level to the shape of the universe at the macroscopic level. The PI will study contact and symplectic geometry in higher dimensions through a higher-dimensional generalization of Heegaard Floer homology. Heegaard Floer homology, due to Ozsváth and Szabó, is a package of invariants of 3- and 4-dimensional spaces as well as knots and links in 3-space, which is extremely effective at distinguishing these spaces and knots and links from one another. The main goal of the PI's research program is to develop the theory of Heegaard Floer homology in higher dimensions, i.e., in dimensions greater than 4. This theory is expected to yield important applications to contact and symplectic geometry in higher dimensions, which in turn are related to algebraic geometry and mathematical physics. Khovanov homology, another important invariant of knots and links in 3-space, can at least conjecturally be viewed as a special case of higher-dimensional Heegaard Floer homology.
首席研究员将使用一种叫做“高维Heegaard flower同源”的理论对3维、4维和高维空间进行研究,该理论是PI与他的合作者Vincent Colin共同开发的。这些空间局部与标准(欧几里得)n维空间相似,全局可能非常复杂,但局部观察者无法分辨其中的区别,就像蚂蚁无法分辨自己是坐在一个平面上还是一个非常大的球体上一样。高维Heegaard flower同调是通过接触几何和辛几何来定义的,而接触几何和辛几何又与数学物理和弦理论密切相关。这些高维的研究反过来又会对我们对低维(即3维和4维)形状的理解做出重大贡献,从微观层面的DNA结到宏观层面的宇宙形状。PI将通过Heegaard flower同调的高维推广来研究高维的接触几何和辛几何。由于Ozsváth和Szabó, Heegaard flower同源性是三维和四维空间以及三维空间中的结和链接的不变量的集合,它在区分这些空间、结和链接方面非常有效。PI研究计划的主要目标是在高维(即大于4维)中发展Heegaard flower同调理论。这一理论有望在高维的接触几何和辛几何中产生重要的应用,而接触几何和辛几何又与代数几何和数学物理有关。Khovanov同调是三维空间中结点和连杆的另一个重要不变量,至少可以推测为高维Heegaard flower同调的一种特殊情况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ko Honda其他文献
A new look at the Tutte polynomial
对 Tutte 多项式的新认识
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Tobias Ekholm;Ko Honda;and Tamas Kalman;Tamas Kalman;Tamas Kalman;Tamas Kalman;Tamas Kalman;Tamas Kalman;Tamas Kalman - 通讯作者:
Tamas Kalman
The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions I
- DOI:
10.1007/s10240-024-00145-x - 发表时间:
2024-04-02 - 期刊:
- 影响因子:3.500
- 作者:
Vincent Colin;Paolo Ghiggini;Ko Honda - 通讯作者:
Ko Honda
The Tutte polynomial, hypergraphs, and duality
Tutte 多项式、超图和对偶性
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Tobias Ekholm;Ko Honda;and Tamas Kalman;Tamas Kalman;Tamas Kalman - 通讯作者:
Tamas Kalman
Haefliger不変量に対するLin-Wang型公式
Haefliger 不变量的 Lin-Wang 型公式
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Tobias Ekholm;Ko Honda;and Tamas Kalman;Tamas Kalman;Tamas Kalman;Tamas Kalman;Tamas Kalman;Tamas Kalman;Tamas Kalman;Tamas Kalman;Tamas Kalman;Tamas Kalman;Keiichi Sakai;Keiichi Sakai;Keiichi Sakai;境 圭一;境 圭一;境 圭一 - 通讯作者:
境 圭一
Sutured Heegaard Floer and embedded contact homologies are isomorphic
缝合的 Heegaard Floer 和嵌入式接触同源性是同构的
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
V. Colin;P. Ghiggini;Ko Honda - 通讯作者:
Ko Honda
Ko Honda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ko Honda', 18)}}的其他基金
Classical and quantum hyperbolic geometry and topology
经典和量子双曲几何和拓扑
- 批准号:
1522850 - 财政年份:2015
- 资助金额:
$ 27.8万 - 项目类别:
Standard Grant
Higher-dimensional Heegaard Floer homology
高维 Heegaard Florer 同源性
- 批准号:
1406564 - 财政年份:2014
- 资助金额:
$ 27.8万 - 项目类别:
Continuing Grant
Contact structures and Floer homology theories
接触结构和弗洛尔同调理论
- 批准号:
1105432 - 财政年份:2011
- 资助金额:
$ 27.8万 - 项目类别:
Continuing Grant
Contact structures, Floer homology and TQFT
接触结构、Floer 同源性和 TQFT
- 批准号:
0805352 - 财政年份:2008
- 资助金额:
$ 27.8万 - 项目类别:
Continuing Grant
Topology of Legendrian and minimal submanifolds
Legendrian 拓扑和最小子流形
- 批准号:
0505076 - 财政年份:2005
- 资助金额:
$ 27.8万 - 项目类别:
Standard Grant
CAREER: Contact Structures and Low-Dimensional Topology
职业:接触结构和低维拓扑
- 批准号:
0237386 - 财政年份:2003
- 资助金额:
$ 27.8万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
应用iTRAQ定量蛋白组学方法分析乳腺癌新辅助化疗后相关蛋白质的变化
- 批准号:81150011
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
肝脏管道系统数字化及三维成像的研究
- 批准号:30470493
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
- 批准号:
2237131 - 财政年份:2023
- 资助金额:
$ 27.8万 - 项目类别:
Continuing Grant
MPS-Ascend: Topics in Low-Dimensional Topology and Heegaard Floer Theory
MPS-Ascend:低维拓扑和 Heegaard Floer 理论主题
- 批准号:
2213027 - 财政年份:2022
- 资助金额:
$ 27.8万 - 项目类别:
Fellowship Award
Three-Dimensional Manifolds, Heegaard Floer Homology and Knot Theory
三维流形、Heegaard Floer 同调和纽结理论
- 批准号:
1904628 - 财政年份:2019
- 资助金额:
$ 27.8万 - 项目类别:
Continuing Grant
Heegaard Floer Homology and Low-Dimensional Topology
Heegaard Floer 同调和低维拓扑
- 批准号:
1811900 - 财政年份:2018
- 资助金额:
$ 27.8万 - 项目类别:
Continuing Grant
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
- 批准号:
1552285 - 财政年份:2016
- 资助金额:
$ 27.8万 - 项目类别:
Continuing Grant
Hyperbolic Geometry, Heegaard Surfaces, Foliation/Lamination Theory, and Smooth Four-Dimensional Topology
双曲几何、Heegaard 曲面、叶状/层状理论和平滑四维拓扑
- 批准号:
1607374 - 财政年份:2016
- 资助金额:
$ 27.8万 - 项目类别:
Continuing Grant
Higher-dimensional Heegaard Floer homology
高维 Heegaard Florer 同源性
- 批准号:
1406564 - 财政年份:2014
- 资助金额:
$ 27.8万 - 项目类别:
Continuing Grant
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
- 批准号:
1252992 - 财政年份:2013
- 资助金额:
$ 27.8万 - 项目类别:
Continuing Grant
Noncommutative and Heegaard Floer Methods in Low-Dimensional Topology
低维拓扑中的非交换和 Heegaard Florer 方法
- 批准号:
1309070 - 财政年份:2013
- 资助金额:
$ 27.8万 - 项目类别:
Continuing Grant
Heegaard Floer homology and its applications to low-dimensional topology
Heegaard Florer 同调及其在低维拓扑中的应用
- 批准号:
1103976 - 财政年份:2011
- 资助金额:
$ 27.8万 - 项目类别:
Standard Grant