STTR Phase I: Cloud-Based Pluggable Learning Analytics Engine for Educational Games

STTR 第一阶段:用于教育游戏的基于云的可插拔学习分析引擎

基本信息

  • 批准号:
    1549811
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

This STTR Phase I project will carry out research and development on a cloud-based pluggable data analytics engine to address the educational game market?s need of real-time assessment for learning. Educational games will become much more successful if learning from games can be well quantified so that buyers will be assured that the time spent using games is productive. However, currently game makers are not qualified or funded to provide the statistics and cognitive assessment required for such analysis. This project will thus build a prototype of commercial pluggable third-party engine that traces the growth of the learner's knowledge in real time without interference and provides customized assessment summary and feedback to educational stakeholders. The prototype will be developed and tested with games that teach data literacy in three high schools representing diverse demographic groups. The testing in a commercial environment will begin in collaboration with two successful educational game companies. The innovative use of data-intensive assessment technology will aid in currently struggling STEM education in the United States by providing streamlined and accurate information while learning occurs. This project will also help launch a new business that has potential to boost the market value of educational games and digital learning.This STTR Phase I project utilizes the Monte-Carlo Bayesian Knowledge Tracing (MC-BKT) algorithm. This algorithm was recently developed in-house based on techniques distilled through years of research in physics, education, and computation, and makes it possible to perform individualized knowledge tracing in real-time for the first time. In prior research, post hoc MC-BKT analysis led to identification of up to seven distinct patterns associated with knowledge growth during game segments, with 84% accuracy as compared with human judgments based on video analysis of game screens and players' discourse. This project will conduct research to test whether this assessment potential of the MC-BKT algorithm can be extended beyond initial research to players with games involving different content domains, in a greater number of classrooms with diverse demographics (involving around 600 high school students), and in real time. Based on research results, this project will build a prototype commercial product around the MC-BKT algorithm in the form of a cloud-based pluggable engine. Two popular commercial educational games as well as various games internally sourced within this project will be test-connected to the engine for real-time testing of knowledge tracing, learning problem detection, and feedback delivery to teachers, parents, game designers, and learners.
这个STTR第一期项目将研究和开发基于云的可插拔数据分析引擎,以解决教育游戏市场的问题。S需要对学习进行实时评估。如果能够很好地量化从游戏中学习的内容,那么教育类游戏就会变得更加成功,从而让玩家确信花在游戏上的时间是有价值的。然而,目前的游戏开发者没有资格或资金来提供这种分析所需的统计数据和认知评估。因此,本项目将构建一个商业化的可插拔的第三方引擎原型,实时跟踪学习者的知识增长,不受干扰,并为教育利益相关者提供定制的评估总结和反馈。该原型将在三所代表不同人口群体的高中进行开发和测试,并通过游戏教授数据素养。在商业环境下的测试将与两家成功的教育游戏公司合作。数据密集型评估技术的创新使用将在学习过程中提供简化和准确的信息,从而帮助美国目前陷入困境的STEM教育。该项目还将有助于启动一项新业务,该业务有可能提高教育游戏和数字学习的市场价值。这个STTR第一期项目使用蒙特卡罗贝叶斯知识追踪(MC-BKT)算法。该算法是基于多年来在物理、教育和计算方面的研究而开发的,首次实现了实时的个性化知识追踪。在之前的研究中,事后MC-BKT分析导致识别出多达七种与游戏片段中知识增长相关的不同模式,与基于游戏屏幕和玩家话语的视频分析的人类判断相比,准确率为84%。该项目将进行研究,以测试MC-BKT算法的评估潜力是否可以从最初的研究扩展到涉及不同内容领域的游戏玩家,在更多具有不同人口统计数据的教室中(涉及约600名高中生),并且是实时的。基于研究成果,本项目将围绕MC-BKT算法以基于云的可插拔引擎的形式构建原型商业产品。两个受欢迎的商业教育游戏以及本项目内部的各种游戏将测试连接到引擎,用于实时测试知识跟踪,学习问题检测,并将反馈传递给教师,家长,游戏设计师和学习者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gey-Hong Gweon其他文献

Gey-Hong Gweon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ATLAS实验探测器Phase 2升级
  • 批准号:
    11961141014
  • 批准年份:
    2019
  • 资助金额:
    3350 万元
  • 项目类别:
    国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
  • 批准号:
    41802035
  • 批准年份:
    2018
  • 资助金额:
    12.0 万元
  • 项目类别:
    青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
  • 批准号:
    61675216
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于Phase-type分布的多状态系统可靠性模型研究
  • 批准号:
    71501183
  • 批准年份:
    2015
  • 资助金额:
    17.4 万元
  • 项目类别:
    青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
  • 批准号:
    51201142
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
  • 批准号:
    11101428
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
  • 批准号:
    19374069
  • 批准年份:
    1993
  • 资助金额:
    6.4 万元
  • 项目类别:
    面上项目

相似海外基金

DAWN Phase 1 FY2023-2024: A UK Industry Academic Co-design Partnership Delivering a Pre-Exascale Research Cloud for AI and Simulation
DAWN 2023-2024 财年第 1 阶段:英国行业学术联合设计合作伙伴关系,为人工智能和仿真提供前百兆亿级研究云
  • 批准号:
    ST/Z000386/1
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Research Grant
NCI SBIR Contract Topic 428 Phase II (Solicitation Number: BAA 75N91022R00027): Cloud-based Liquid-biopsy and Radiomics Platform for the Cancer Research Data Commons
NCI SBIR 合同主题 428 第二阶段(征集编号:BAA 75N91022R00027):用于癌症研究数据共享的基于云的液体活检和放射组学平台
  • 批准号:
    10906504
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Arctic Cold-Air Outbreak Mixed-Phase Cloud Characteristics, Processes and Impacts in Observations and Models
北极冷空气爆发混合相云特征、过程及其对观测和模型的影响
  • 批准号:
    2150848
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Design and development of a portable cloud chamber and understanding of mixed-phase microphysical and chemical processes by mountain observation
便携式云室的设计和开发以及通过山地观测了解混合相微物理和化学过程
  • 批准号:
    23K17465
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Quantifying the interplay of particle size, composition and phase separation: development of size-dependent aerosol thermodynamics and dynamics models for improved simulations of air quality and aerosol-cloud interactions
量化颗粒尺寸、成分和相分离的相互作用:开发尺寸相关的气溶胶热力学和动力学模型,以改进空气质量和气溶胶-云相互作用的模拟
  • 批准号:
    RGPIN-2021-02688
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Discovery Grants Program - Individual
SBIR Phase I: Mitigating the effects of isolation and absence of therapies through the delivery of cloud based digital treatments and remote patient monitoring
SBIR 第一阶段:通过提供基于云的数字治疗和远程患者监控来减轻隔离和缺乏治疗的影响
  • 批准号:
    2036451
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Quantifying the interplay of particle size, composition and phase separation: development of size-dependent aerosol thermodynamics and dynamics models for improved simulations of air quality and aerosol-cloud interactions
量化颗粒尺寸、成分和相分离的相互作用:开发尺寸相关的气溶胶热力学和动力学模型,以改进空气质量和气溶胶-云相互作用的模拟
  • 批准号:
    RGPIN-2021-02688
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Discovery Grants Program - Individual
SBIR Phase II: A cloud-native, data-driven platform for automated quality assurance of radiation oncology treatment planning
SBIR 第二阶段:一个云原生、数据驱动的平台,用于放射肿瘤治疗计划的自动化质量保证
  • 批准号:
    2035750
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Cooperative Agreement
SBIR Phase I: Intelligent, real-time migration of software containers to optimize cloud computing resources
SBIR第一阶段:软件容器智能实时迁移,优化云计算资源
  • 批准号:
    2025878
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Chameleon Phase III: A Large-Scale, Reconfigurable Experimental Environment for Cloud Research
合作研究:Chameleon 第三阶段:用于云研究的大规模、可重构实验环境
  • 批准号:
    2027170
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了