Collaborative Research: EAGER: Energy Harvesting via Thermo-Piezoelectric Transduction

合作研究:EAGER:通过热压电转换进行能量收集

基本信息

  • 批准号:
    1549973
  • 负责人:
  • 金额:
    $ 13.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2016-11-30
  • 项目状态:
    已结题

项目摘要

This collaborative, EArly-concept Grants for Exploratory Research (EAGER), research project focuses on a design concept that may allow energy harvesting from waste heat, by converting the heat to electrical energy. The vision of the research is to use heat pipes, in particular so-called oscillating heat pipes (OHP). Inside an OHP, a series of serpentine-arranged mini-channels exist that are partially filled with a working fluid. There has been limited, if any, research in the area of energy-harvesting through the use of heat pipes. Heat pipes provide salient mechanical work within their structure due to vapor expansion and fluid flow. This research aims to harvest this internal work by augmenting the OHP heat transfer to the environment through utilization of a specially designed energy harvesting system that enables generation of electrical work through a piezoelectric effect, namely thermally-actuated piezoelectric transduction (TPT). This research project will contribute to better understanding of the physics and application of TPT, improved understanding of piezoelectric-materials, energy-harvesting using OHPs. This research will bridge research perspectives and approaches from the thermal/fluid sciences and power generation. Potential applications for these devices are numerous, especially for waste heat recovery and/or renewable power generation. The technology and basic science derived can result in: off-grid power generation for communications devices (e.g., third world country cellular phone charging and defense applications), more energy-efficient electronics packaging schemes, and new opportunities for high heat flux thermal energy harvesting. Geothermal temperature gradients may also be exploited for constant, renewable power generation via the implementation of ultra-large OHP/TPT systems or OHP/TPTs aligned in-series. This collaborative project will support both graduate and undergraduate researchers that have been traditionally underrepresented.The OHP has yet to be investigated as a means to destabilize natural temperature gradients for the purpose of establishing a Stirling cycle, nor has it been investigated as a means for power generation. A unique opportunity for using TPT is atop a flat-plate oscillating heat pipe (OHP) - a device that effectively transfers heat via cyclic phase change of an internal working fluid - giving rise to an oscillatory temperature field on its surface. The research will investigate the use of both TPT and OHPs for combined 1) power generation/energy harvesting, and 2) highly-efficient heat transfer. To accomplish this, a unique energy harvester, which is directly attached to the OHP surface, will be designed and will consist of a micro-sized heat sink, encapsulated gas and suspended, spring-resisted piezoelectric material. An aggressive schedule of well-designed experiments is planned to determine how the effectiveness of TPT depends on OHP and energy harvester design. A highly-coupled set of governing equations will be defined and solved by joining common OHP thermo/fluidic models with the constitutive equations of piezoelectric materials. Numerical multi-physics software will be utilized to simulate the convective air flow in the energy harvester and electricity generation inherent to the proposed method for OHP-integrated TPT. The mechanical response and fatigue of various piezoelectric materials for TPT will be evaluated. Thermoelectricity generation via the proposed OHP/TPT is a unique and potentially transformative approach to enthalpy-to-electricity conversion as the OHP/TPT can efficiently transfer heat from one location to another (with ultra-high thermal conductivity) while also generating power.
这个合作的早期概念探索研究奖助金(AGIRE)研究项目专注于一种设计概念,可以通过将热能转化为电能来从废热中收集能量。这项研究的愿景是使用热管,特别是所谓的振荡热管(OHP)。在OHP内部,存在一系列蛇形排列的微型通道,其中部分填充了工作液。在通过使用热管收集能源方面的研究有限,如果有的话。由于蒸汽膨胀和流体流动,热管在其结构内提供了显著的机械功。这项研究的目的是通过利用一种特殊设计的能量收集系统来增强OHP对环境的热传递,从而收获这一内部功,该系统能够通过压电效应产生电能,即热致动压电换能器(TPT)。这一研究项目将有助于更好地理解TPT的物理和应用,提高对压电材料的理解,以及利用OHPS进行能量收集。这项研究将连接热/流体科学和发电的研究视角和方法。这些设备的潜在应用很多,特别是在余热回收和/或可再生能源发电方面。衍生的技术和基础科学可以带来:通信设备的离网发电(例如,第三世界国家的移动电话充电和国防应用)、更节能的电子封装方案,以及高热通量热能收集的新机会。还可以利用地热温度梯度,通过实施超大型OHP/TPT系统或串联OHP/TPT系统,实现恒定的可再生发电。这一合作项目将支持传统上缺乏代表性的研究生和本科生研究人员。OHP尚未被作为一种破坏自然温度梯度以建立斯特林循环的手段进行研究,也没有被作为一种发电手段进行研究。使用TPT的独特机会是安装在平板振荡热管(OHP)上,该设备通过内部工质的循环相变有效地传递热量,在其表面产生振荡的温度场。这项研究将调查TPT和OHPS在1)发电/能量收集和2)高效热传输方面的联合使用。为了实现这一点,将设计一种直接连接到OHP表面的独特的能量收集器,它将由一个微型散热器、封装的气体和悬浮的、抗弹簧的压电材料组成。为了确定TPT的有效性如何取决于OHP和能源收割机的设计,计划进行一系列精心设计的积极进度表。通过将常见的OHP热/流体模型与压电材料的本构方程相结合,定义并求解了一组高度耦合的控制方程。将利用数值多物理软件来模拟能量收集器中的对流空气流动和所提出的OHP集成TPT方法所固有的发电。对不同的TPT用压电材料的机械响应和疲劳性能进行了评价。通过拟议的OHP/TPT热电发电是一种独特的、具有潜在变革性的热电转换方法,因为OHP/TPT可以有效地将热量从一个位置转移到另一个位置(具有超高的导热系数),同时还可以发电。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A modified energy-based approach for fatigue life prediction of superelastic NiTi in presence of tensile mean strain and stress
Analysis and comparison of internal and external temperature measurements of a tubular oscillating heat pipe
管式振荡热管内外温度测量分析与比较
  • DOI:
    10.1016/j.expthermflusci.2017.01.020
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Monroe, J. Gabriel;Aspin, Zachary S.;Fairley, John D.;Thompson, Scott M.
  • 通讯作者:
    Thompson, Scott M.
Energy harvesting via fluidic agitation of a magnet within an oscillating heat pipe
通过振荡热管内磁体的流体搅拌来收集能量
  • DOI:
    10.1016/j.applthermaleng.2017.10.076
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Monroe, J. Gabriel;Ibrahim, Omar T.;Thompson, Scott M.;Shamsaei, Nima
  • 通讯作者:
    Shamsaei, Nima
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott Thompson其他文献

Police UAV use: institutional realities and public perceptions
警用无人机的使用:制度现实和公众看法
Neuron Subtype Specific Molecular Mechanisms in Fentanyl Abstinence
  • DOI:
    10.1016/j.biopsych.2022.02.052
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Megan Fox;Andreas Wulff;Daniela Franco;Eric Choi;Michel Engeln;Cali Calarco;Makeda Turner;Ramesh Chandra;Scott Thompson;Seth A. Ament;Mary Kay Lobo
  • 通讯作者:
    Mary Kay Lobo
The Effect of Introductory Economics Courses on College Students' Conservatism
经济学入门课程对大学生保守主义的影响
  • DOI:
    10.1080/00220485.1985.10845098
  • 发表时间:
    1985
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Stephen L. Jackstadt;J. Brennan;Scott Thompson
  • 通讯作者:
    Scott Thompson
Intracardiac Shunts Among Patients Undergoing Oil-Based Contrast Lymphangiography: Prevalence and Rate of Systemic Arterial Embolic Complications
  • DOI:
    10.1016/j.mayocpiqo.2024.08.003
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Wade Nedderman;Emily Bendel;Jason Anderson;Chris Reisenauer;Edwin Takahashi;Erica Knavel Koepsel;Stephanie Polites;Scott Thompson
  • 通讯作者:
    Scott Thompson
Use of Neurophysiological Monitoring during MR Imaging–Guided Ablation Procedures at 1.5 T: Workflow and Safety Considerations
  • DOI:
    10.1016/j.jvir.2024.07.009
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kevin Treb;Christopher Favazza;David Woodrum;Scott Thompson;Ernest M. Hoffman;Tatsuya Oishi;Daniel Adamo;Myung-Ho In;Eric Stinson;Krzysztof Gorny;Aiming Lu
  • 通讯作者:
    Aiming Lu

Scott Thompson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scott Thompson', 18)}}的其他基金

FMSG: Eco: Off-Grid Construction via Sustainable Compression Curing of Vegetable Oil-Impregnated Sediments
FMSG:生态:通过植物油浸渍沉积物的可持续压缩固化进行离网建设
  • 批准号:
    2423166
  • 财政年份:
    2023
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
FMSG: Eco: Off-Grid Construction via Sustainable Compression Curing of Vegetable Oil-Impregnated Sediments
FMSG:生态:通过植物油浸渍沉积物的可持续压缩固化进行离网建设
  • 批准号:
    2229267
  • 财政年份:
    2022
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy Harvesting via Thermo-Piezoelectric Transduction
合作研究:EAGER:通过热压电转换进行能量收集
  • 批准号:
    1660446
  • 财政年份:
    2016
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
SBIR Phase II: A High Frequency Beam Steered Electromagnetic Impulse Radar to Locate Human Targets Through Opaque Media
SBIR 第二阶段:高频波束控制电磁脉冲雷达通过不透明介质定位人体目标
  • 批准号:
    0216574
  • 财政年份:
    2002
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
SBIR Phase I: A High Frequency Beam Steered Electromagnetic Impulse Radar to Locate Human Targets Through Opaque Media
SBIR 第一阶段:高频波束控制电磁脉冲雷达通过不透明介质定位人体目标
  • 批准号:
    0109828
  • 财政年份:
    2001
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
SBIR Phase I: Using Hidden Markov Models to Track Human Targets
SBIR 第一阶段:使用隐马尔可夫模型跟踪人类目标
  • 批准号:
    9760988
  • 财政年份:
    1998
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
SBIR Phase I: Enhanced Airborne Beam-Steering for Ground Probing Radar
SBIR 第一阶段:地面探测雷达的增强型机载波束控制
  • 批准号:
    9660920
  • 财政年份:
    1997
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
SBIR PHASE II: Electronic Beam Steering for Ground Probing Radar
SBIR 第二阶段:地面探测雷达电子波束控制
  • 批准号:
    9708205
  • 财政年份:
    1997
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
SBIR PHASE I: Electronic Beam Steering for Ground Probing Radar
SBIR 第一阶段:地面探测雷达电子波束控制
  • 批准号:
    9561190
  • 财政年份:
    1996
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
NATO Postdoctoral Fellow
北约博士后研究员
  • 批准号:
    8651732
  • 财政年份:
    1986
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了