INSPIRE: Not Unbiased: The Implications of Human-Algorithm Interaction on Training Data and Algorithm Performance
INSPIRE:并非公正:人机交互对训练数据和算法性能的影响
基本信息
- 批准号:1549981
- 负责人:
- 金额:$ 81.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This INSPIRE award is partially funded by the Information Integration and Informatics program in the Division of Information and Intelligent Systems in the Directorate for Computer & Information Science & Engineering, the Perception, Action & Cognition program in the Division of Behavioral and Cognitive Sciences in the Directorate for Social, Behavioral & Economic Sciences, and the Office of Integrative Activities in the Office of the Director.One of the most common uses of machine learning is to learn to replicate human decisions, a common example is recommender systems. In these systems, computers are trained to replicate the recommendation a collaboration of hundreds or thousands of humans would give, if that were possible. Most of the data used to train these systems are not from a controlled random sample, but are obtained from users based on outputs of algorithms (e.g., which search engine results do users click on?), which introduces bias into the process and ultimately impacts the quality of the results. This project addresses this problem by examining how the human decision process that creates these data in the first place is affected by the data coming from machine algorithms, how this in turn impacts the algorithms themselves, and how to ultimately adjust for human bias in the machine learning process. Specific areas tackled are filtering (e.g., web search) and recommender systems. The deep research into how the human decision process affects machine learning, and how machine learning impacts the human decision process, can provide significant advances in the accuracy and utility of systems using machine learning.The project builds on analysis of machine learning algorithms based on Hidden Markov Models (HMMs). The formal analysis initially looks at "blind spots" - the impact of bias from users not getting complete (or a random sample) of data. Further analysis will be based on the outcome of two human experiments: Two category recommendation (labeling items, with items to be labelled chosen by random, active learning, and filter-based algorithms), and movie recommendation. The results will be used to develop improved machine learning approaches based on antidotes (altering learned models to reduce bias) and reactive learning (active learning that takes into account the human and machine biases). The PIs also have plans to capitalize on the lessons learned by providing examples of the use of cognitive science in a Web Mining course, and of the impact of machine learning in Data Science for Psychologists courses.
该INSPIRE奖的部分资金来自计算机与信息科学与工程系信息与智能系统部的信息集成与信息学项目,社会、行为与经济科学部行为与认知科学部的感知、行动与认知项目,以及主任办公室的综合活动办公室。机器学习最常见的用途之一是学习复制人类的决策,一个常见的例子是推荐系统。在这些系统中,计算机经过训练,可以复制数百或数千人合作给出的建议(如果可能的话)。用于训练这些系统的大多数数据不是来自受控的随机样本,而是基于算法输出从用户那里获得的(例如,用户点击了哪些搜索引擎结果?),这在过程中引入了偏见,并最终影响了结果的质量。该项目通过研究首先创建这些数据的人类决策过程如何受到来自机器算法的数据的影响,这反过来又如何影响算法本身,以及如何最终调整机器学习过程中的人类偏见来解决这个问题。具体处理的领域是过滤(例如,网络搜索)和推荐系统。深入研究人类决策过程如何影响机器学习,以及机器学习如何影响人类决策过程,可以在使用机器学习的系统的准确性和实用性方面取得重大进展。该项目建立在对基于隐马尔可夫模型(hmm)的机器学习算法的分析之上。正式分析最初着眼于“盲点”——用户不完整(或随机抽样)数据的偏见影响。进一步的分析将基于两个人类实验的结果:两个类别推荐(标记项目,通过随机、主动学习和基于过滤器的算法选择要标记的项目)和电影推荐。研究结果将用于开发基于解毒剂(改变学习模型以减少偏差)和反应性学习(考虑人类和机器偏差的主动学习)的改进机器学习方法。pi还计划通过在网络挖掘课程中提供认知科学的应用实例,以及在心理学家数据科学课程中提供机器学习的影响,来利用所学到的经验教训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olfa Nasraoui其他文献
Automated Discovery, Categorization and Retrieval of Personalized Semantically Enriched E-learning Resources
自动发现、分类和检索个性化语义丰富的电子学习资源
- DOI:
10.1109/icsc.2009.107 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Leyla Zhuhadar;Olfa Nasraoui;R. Wyatt;Elizabeth Romero - 通讯作者:
Elizabeth Romero
ChatGPT for Conversational Recommendation: Refining Recommendations by Reprompting with Feedback
用于对话式推荐的 ChatGPT:通过反馈重新提示来完善推荐
- DOI:
10.48550/arxiv.2401.03605 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
K. Spurlock;Cagla Acun;Esin Saka;Olfa Nasraoui - 通讯作者:
Olfa Nasraoui
Enhancing Explainable Matrix Factorization with Tags for Multi-Style Explanations
使用多风格解释的标签增强可解释的矩阵分解
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Olurotimi Seton;P. Haghighi;Mohammad Alshammari;Olfa Nasraoui - 通讯作者:
Olfa Nasraoui
Robot failure mode prediction with deep learning sequence models
- DOI:
10.1007/s00521-024-10856-1 - 发表时间:
2024-12-19 - 期刊:
- 影响因子:4.500
- 作者:
Khalil Damak;Mariem Boujelbene;Cagla Acun;Aneseh Alvanpour;Sumit K. Das;Dan O. Popa;Olfa Nasraoui - 通讯作者:
Olfa Nasraoui
Guest editorial: special issue on a decade of mining the Web
- DOI:
10.1007/s10618-012-0257-y - 发表时间:
2012-03-03 - 期刊:
- 影响因子:4.300
- 作者:
Myra Spiliopoulou;Bamshad Mobasher;Olfa Nasraoui;Osmar Zaiane - 通讯作者:
Osmar Zaiane
Olfa Nasraoui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olfa Nasraoui', 18)}}的其他基金
ADVANCE Adaptation: Advancement through Healthy Empowerment, Networking and Awareness (ATHENA) at University of Louisville
路易斯维尔大学的高级适应:通过健康赋权、网络和意识取得进步(ATHENA)
- 批准号:
1936125 - 财政年份:2019
- 资助金额:
$ 81.32万 - 项目类别:
Standard Grant
RET Site: Research Experiences for Teachers in Big Data and Data Science
RET 网站:大数据和数据科学教师的研究经验
- 批准号:
1801513 - 财政年份:2018
- 资助金额:
$ 81.32万 - 项目类别:
Standard Grant
DC: Small: Stream Clustering Algorithms in Mixed Domains with Soft Two-way Semi-Supervision
DC:Small:具有软双向半监督的混合域流聚类算法
- 批准号:
0916489 - 财政年份:2009
- 资助金额:
$ 81.32万 - 项目类别:
Standard Grant
CAREER: New Clustering Algorithms Based on Robust Estimation and Genetic Niches with Applications to Web Usage Mining
职业:基于鲁棒估计和遗传利基的新聚类算法及其在网络使用挖掘中的应用
- 批准号:
0533317 - 财政年份:2004
- 资助金额:
$ 81.32万 - 项目类别:
Continuing Grant
SEI: Mining Solar Images to Support Astrophysics Research
SEI:挖掘太阳图像以支持天体物理学研究
- 批准号:
0431128 - 财政年份:2004
- 资助金额:
$ 81.32万 - 项目类别:
Standard Grant
SEI: Mining Solar Images to Support Astrophysics Research
SEI:挖掘太阳图像以支持天体物理学研究
- 批准号:
0532443 - 财政年份:2004
- 资助金额:
$ 81.32万 - 项目类别:
Standard Grant
CAREER: New Clustering Algorithms Based on Robust Estimation and Genetic Niches with Applications to Web Usage Mining
职业:基于鲁棒估计和遗传利基的新聚类算法及其在网络使用挖掘中的应用
- 批准号:
0133948 - 财政年份:2002
- 资助金额:
$ 81.32万 - 项目类别:
Continuing Grant
相似海外基金
Efficient and unbiased estimation in adaptive platform trials
自适应平台试验中的高效且公正的估计
- 批准号:
MR/X030261/1 - 财政年份:2024
- 资助金额:
$ 81.32万 - 项目类别:
Research Grant
CAREER: Optogel Proteomics: unbiased subcellular proteomics powered by photoreactions in hydrogel
职业:Optogel 蛋白质组学:由水凝胶中的光反应驱动的无偏亚细胞蛋白质组学
- 批准号:
2341058 - 财政年份:2024
- 资助金额:
$ 81.32万 - 项目类别:
Continuing Grant
A Solar Photoelectrochemical Cell for Unbiased Hydrogen Production
用于无偏产氢的太阳能光电化学电池
- 批准号:
DE240100660 - 财政年份:2024
- 资助金额:
$ 81.32万 - 项目类别:
Discovery Early Career Researcher Award
Unbiased estimation in hierarchical models for Clinical trials
临床试验分层模型中的无偏估计
- 批准号:
2884930 - 财政年份:2023
- 资助金额:
$ 81.32万 - 项目类别:
Studentship
Construction of an unbiased and synthesizable inorganic database from data-driven
从数据驱动构建公正且可综合的无机数据库
- 批准号:
23K16955 - 财政年份:2023
- 资助金额:
$ 81.32万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: HNDS-I:SweetPea: Automating the Implementation and Documentation of Unbiased Experimental Designs
合作研究:HNDS-I:SweetPea:自动化无偏实验设计的实施和记录
- 批准号:
2318548 - 财政年份:2023
- 资助金额:
$ 81.32万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I:SweetPea: Automating the Implementation and Documentation of Unbiased Experimental Designs
合作研究:HNDS-I:SweetPea:自动化无偏实验设计的实施和记录
- 批准号:
2318550 - 财政年份:2023
- 资助金额:
$ 81.32万 - 项目类别:
Standard Grant
Sensitive, unbiased, high-throughput, cellular GUIDE-seq-2 genome-wide activity assay for therapeutic genome editing INDs
用于治疗性基因组编辑 IND 的灵敏、无偏倚、高通量、细胞 GUIDE-seq-2 全基因组活性测定
- 批准号:
10668823 - 财政年份:2023
- 资助金额:
$ 81.32万 - 项目类别:
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 81.32万 - 项目类别:
Unbiased electrothermal flow-enhanced identification of antigen-specific T cells in lung cancer
无偏电热流增强肺癌抗原特异性 T 细胞的鉴定
- 批准号:
10723218 - 财政年份:2023
- 资助金额:
$ 81.32万 - 项目类别: