EAGER: Collaborative Research: Liquid-Based Intelligent High-Frequency Components
EAGER:合作研究:液基智能高频元件
基本信息
- 批准号:1550741
- 负责人:
- 金额:$ 11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High-frequency electronic components play an important role in our daily lives. They cover the broad frequency range from radio frequency (RF) to microwave to terahertz (THz). Typical applications include wireless fidelity (Wi-Fi) systems, microwave ovens, bluetooth systems, wireless power transfer, satellite communication, anti-collision car radar, airport security check systems, THz imaging, and many others. With the advent of these systems, high-frequency electronic components are now required to support electronic systems operating in many different frequency bands and with different characteristics. To address this issue, it is important to design and realize high-frequency electronic components with reconfigurable and highly flexible responses (e.g. THz components with tunable frequency band and large modulation depth). Up to now, almost all of such high-frequency components are made of solid materials. Their physical structures are rigid, fixed and difficult to reconfigure. This research will study novel liquid-based high-frequency electronic components. The employment of liquids to replace conventional solid materials will facilitate the generation of reconfigurable and intelligent electronic systems with high adaptability. The intelligence is enabled by electronically manipulating liquid movements and morphing its shape. The proposed research will pave the way for the development of liquid-based electronic systems. In addition to advancing knowledge in both science and engineering, the proposed project will have potential broad impacts to our society, including improvements to communication, safety, health care, and defense systems. This project will also produce exciting learning and training opportunities for students.The explosive development of communication systems in the past decade has imposed stringent design challenges for high-frequency components. For example, the emerging THz technology has called for the innovative design of THz components with advanced functionalities. The proposed project aims to realize efficient use and control of liquid materials to adaptively change the responses of high-frequency devices, from which system level intelligence can be achieved to actively control these devices for optimal performance. Electrowetting on dielectric (EWOD) will be employed as the tuning mechanism to realize agile actuation and programmable transport of liquids. The resulting novel liquid-based high-frequency devices can operate efficiently at the broad spectrum from RF/microwave to THz. By leveraging multi-disciplinary knowledge in electromagnetics and electrowetting techniques, this project has the following three innovations: (1) design of novel liquid-based THz components with transformative characteristics and properties; (2) use of the EWOD technique to realize adaptive tuning of the high-frequency devices with reconfigurable and programmable responses; (3) tuning of high-frequency components through three-dimensional manipulation of liquids. The proposed research represents a systematic and interdisciplinary effort to realize liquid-based high-frequency components with a fully electronically-controlled tuning and flexible properties, covering a broad range of applications such as communications, security, and sensing. The proposed design will be verified by experimental results and module demonstration.
高频电子元件在我们的日常生活中发挥着重要作用。它们涵盖了从射频 (RF) 到微波再到太赫兹 (THz) 的广泛频率范围。典型应用包括无线保真 (Wi-Fi) 系统、微波炉、蓝牙系统、无线电力传输、卫星通信、防撞汽车雷达、机场安全检查系统、太赫兹成像等。随着这些系统的出现,现在需要高频电子元件来支持在许多不同频段和具有不同特性下运行的电子系统。为了解决这个问题,设计和实现具有可重构和高度灵活响应的高频电子元件(例如具有可调频带和大调制深度的太赫兹元件)非常重要。到目前为止,几乎所有此类高频元件都是由固体材料制成的。 它们的物理结构是僵化的、固定的并且难以重新配置。这项研究将研究新型液体高频电子元件。使用液体替代传统固体材料将有助于产生具有高适应性的可重构和智能电子系统。这种智能是通过电子操纵液体运动并改变其形状来实现的。拟议的研究将为液基电子系统的发展铺平道路。 除了推进科学和工程知识之外,拟议的项目还将对我们的社会产生潜在的广泛影响,包括改善通信、安全、医疗保健和国防系统。该项目还将为学生提供令人兴奋的学习和培训机会。过去十年通信系统的爆炸性发展给高频元件带来了严峻的设计挑战。例如,新兴的太赫兹技术需要具有先进功能的太赫兹元件的创新设计。该项目旨在实现液体材料的高效使用和控制,以自适应地改变高频设备的响应,从而实现系统级智能,主动控制这些设备以获得最佳性能。电介质电润湿(EWOD)将被用作调谐机制,以实现液体的敏捷驱动和可编程传输。由此产生的新型液体高频设备可以在从射频/微波到太赫兹的广谱范围内高效运行。通过利用电磁学和电润湿技术的多学科知识,该项目具有以下三项创新:(1)设计具有变革性特征和性能的新型液基太赫兹元件; (2)利用EWOD技术实现高频器件的自适应调谐,响应可重构、可编程; (3)通过液体的三维操纵来调谐高频分量。拟议的研究代表了一项系统性和跨学科的努力,旨在实现具有完全电子控制调谐和灵活特性的基于液体的高频元件,涵盖通信、安全和传感等广泛的应用。所提出的设计将通过实验结果和模块演示进行验证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hualiang Zhang其他文献
Root Contact between Maize and Alfalfa Facilitates Nitrogen Transfer and Uptake Using Techniques of Foliar 15N-Labeling
利用叶面 15N 标记技术,玉米和苜蓿之间的根部接触促进氮素转移和吸收
- DOI:
10.3390/agronomy10030360 - 发表时间:
2020-03 - 期刊:
- 影响因子:0
- 作者:
Zeqiang Shao;Xinyu Wang;Qiang Gao;Hualiang Zhang;Hailing Yu;Yin Wang;Jinjing Zhang;Jamal Nasar;Yingzhi Gao - 通讯作者:
Yingzhi Gao
Techno-economic performance of the solar tower power plants integrating with 650 °C high-temperature molten salt thermal energy storage
集成650°C高温熔盐热能存储的太阳能塔式发电厂的技术经济性能
- DOI:
10.1016/j.energy.2025.136073 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:9.400
- 作者:
Xinyu Chen;Liang Wang;Xiaojun Li;Jianzhou Ji;Xipeng Lin;Hualiang Zhang;Feng Liu;Haisheng Chen - 通讯作者:
Haisheng Chen
Current Status and Prospects of High-Speed Direct-Drive Turbine Power Generation Technology
- DOI:
10.1007/s11630-024-2062-5 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:2.600
- 作者:
Chenglong Jiang;Zhao Yin;Hualiang Zhang;Peijian Zhou;Yu Liu;Kun Cheng;Yujie Xu;Haisheng Chen - 通讯作者:
Haisheng Chen
Synthesis of glucuronic acid by heterogeneous selective oxidation with active MnO2 characterized generally
- DOI:
10.1007/s11144-015-0930-4 - 发表时间:
2015-09-30 - 期刊:
- 影响因子:1.700
- 作者:
Jiaxiong Wu;Hua Yuan;Pei Zhang;Hualiang Zhang;Yuanxin Wu - 通讯作者:
Yuanxin Wu
Design of broadband GaN doherty power amplifiers
宽带GaN Doherty功率放大器的设计
- DOI:
10.1109/pawr.2014.6825728 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Jin Shao;Rongguo Zhou;H. Ren;B. Arigong;Mi Zhou;H. Kim;Hualiang Zhang - 通讯作者:
Hualiang Zhang
Hualiang Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hualiang Zhang', 18)}}的其他基金
Collaborative Research: Three-Dimensional Laser Holographic Nanopatterning Using Metamaterial Phase Masks
合作研究:使用超材料相位掩模的三维激光全息纳米图案
- 批准号:
1661749 - 财政年份:2017
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Liquid-Based Intelligent High-Frequency Components
EAGER:合作研究:液基智能高频元件
- 批准号:
1637610 - 财政年份:2016
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
Tunable Plasmonic Devices Enabled by Holographically-Formed Polymer Dispersed Liquid Crystals
由全息形成的聚合物分散液晶实现的可调谐等离子体器件
- 批准号:
1128099 - 财政年份:2011
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 11万 - 项目类别:
Standard Grant