EAGER: Collaborative Research: Liquid-Based Intelligent High-Frequency Components
EAGER:合作研究:液基智能高频元件
基本信息
- 批准号:1550749
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High-frequency electronic components play an important role in our daily lives. They cover the broad frequency range from radio frequency (RF) to microwave to terahertz (THz). Typical applications include wireless fidelity (Wi-Fi) systems, microwave ovens, bluetooth systems, wireless power transfer, satellite communication, anti-collision car radar, airport security check systems, THz imaging, and many others. With the advent of these systems, high-frequency electronic components are now required to support electronic systems operating in many different frequency bands and with different characteristics. To address this issue, it is important to design and realize high-frequency electronic components with reconfigurable and highly flexible responses (e.g. THz components with tunable frequency band and large modulation depth). Up to now, almost all of such high-frequency components are made of solid materials. Their physical structures are rigid, fixed and difficult to reconfigure. This research will study novel liquid-based high-frequency electronic components. The employment of liquids to replace conventional solid materials will facilitate the generation of reconfigurable and intelligent electronic systems with high adaptability. The intelligence is enabled by electronically manipulating liquid movements and morphing its shape. The proposed research will pave the way for the development of liquid-based electronic systems. In addition to advancing knowledge in both science and engineering, the proposed project will have potential broad impacts to our society, including improvements to communication, safety, health care, and defense systems. This project will also produce exciting learning and training opportunities for students.The explosive development of communication systems in the past decade has imposed stringent design challenges for high-frequency components. For example, the emerging THz technology has called for the innovative design of THz components with advanced functionalities. The proposed project aims to realize efficient use and control of liquid materials to adaptively change the responses of high-frequency devices, from which system level intelligence can be achieved to actively control these devices for optimal performance. Electrowetting on dielectric (EWOD) will be employed as the tuning mechanism to realize agile actuation and programmable transport of liquids. The resulting novel liquid-based high-frequency devices can operate efficiently at the broad spectrum from RF/microwave to THz. By leveraging multi-disciplinary knowledge in electromagnetics and electrowetting techniques, this project has the following three innovations: (1) design of novel liquid-based THz components with transformative characteristics and properties; (2) use of the EWOD technique to realize adaptive tuning of the high-frequency devices with reconfigurable and programmable responses; (3) tuning of high-frequency components through three-dimensional manipulation of liquids. The proposed research represents a systematic and interdisciplinary effort to realize liquid-based high-frequency components with a fully electronically-controlled tuning and flexible properties, covering a broad range of applications such as communications, security, and sensing. The proposed design will be verified by experimental results and module demonstration.
高频电子元件在我们的日常生活中扮演着重要的角色。它们涵盖了从射频(RF)到微波到太赫兹(THz)的广泛频率范围。典型的应用包括无线保真(Wi-Fi)系统、微波炉、蓝牙系统、无线电力传输、卫星通信、防撞汽车雷达、机场安全检查系统、太赫兹成像等。随着这些系统的出现,现在需要高频电子元件来支持在许多不同频带和不同特性下运行的电子系统。为了解决这一问题,设计和实现具有可重构和高度灵活响应的高频电子元件(例如具有可调谐频带和大调制深度的太赫兹元件)是很重要的。到目前为止,几乎所有这类高频元件都是由固体材料制成的。它们的物理结构是刚性的、固定的,难以重新配置。本研究将研究新型液体基高频电子元件。利用液体取代传统的固体材料将有助于产生具有高适应性的可重构和智能电子系统。智能是通过电子操纵液体运动和改变其形状来实现的。提出的研究将为基于液体的电子系统的发展铺平道路。除了推进科学和工程方面的知识外,拟议中的项目还将对我们的社会产生潜在的广泛影响,包括改善通信、安全、医疗保健和国防系统。该项目还将为学生提供令人兴奋的学习和培训机会。在过去的十年中,通信系统的爆炸性发展对高频元件的设计提出了严格的挑战。例如,新兴的太赫兹技术要求创新设计具有先进功能的太赫兹元件。本课题旨在实现对液体材料的有效利用和控制,自适应改变高频器件的响应,从而实现系统级智能,主动控制高频器件,使其达到最佳性能。采用介质电润湿(EWOD)作为调节机构,实现液体的敏捷驱动和可编程输送。由此产生的新型液体基高频器件可以在射频/微波到太赫兹的广谱范围内高效工作。通过利用电磁学和电润湿技术的多学科知识,本项目有以下三个创新:(1)设计具有变革性特征和性能的新型液体基太赫兹元件;(2)利用EWOD技术实现响应可重构、可编程的高频器件的自适应调谐;(3)通过液体的三维操纵对高频元件进行调谐。提出的研究代表了系统和跨学科的努力,以实现基于液体的高频元件,具有完全电子控制调谐和灵活的特性,涵盖了广泛的应用,如通信,安全和传感。本文将通过实验结果和模块演示来验证所提出的设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiangtao Cheng其他文献
A Novel Weakly Supervised Ensemble Learning Framework for Automated Pixel-Wise Industry Anomaly Detection
用于自动逐像素行业异常检测的新型弱监督集成学习框架
- DOI:
10.1109/jsen.2021.3131908 - 发表时间:
2022-01 - 期刊:
- 影响因子:4.3
- 作者:
Shuang Mei;Jiangtao Cheng;Xin He;Hao Hu;Guojun Wen - 通讯作者:
Guojun Wen
Finite element modeling of slug tests in an aquifer with stratigraphical and structural heterogeneities.
具有地层和结构异质性的含水层段塞测试的有限元建模。
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Jiangtao Cheng;M. Everett - 通讯作者:
M. Everett
Dispersion-modified, highly nonlinear holey fibre with a high index, slot-structure core
色散改性、高度非线性多孔光纤,具有高折射率、槽结构纤芯
- DOI:
10.1088/2040-8978/12/11/115502 - 发表时间:
2010 - 期刊:
- 影响因子:2.1
- 作者:
Lin An;Zheng Zheng;Yusheng Bian;Zheng Li;Sen Shi;Tao Zhou;Jiangtao Cheng - 通讯作者:
Jiangtao Cheng
Improved HVIGBT Transient Modeling Method Based on Hefner Model
基于Hefner模型的改进HVIGBT暂态建模方法
- DOI:
10.1109/apet59977.2023.10489260 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jinggang Cui;Gaohui Feng;Jiangtao Cheng - 通讯作者:
Jiangtao Cheng
Dispersion-flattened holey fiber with an ultra-small mode area using a high index slot structure
采用高折射率槽结构的超小模式面积色散平坦多孔光纤
- DOI:
10.1364/cleo.2009.jthe71 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Lin An;Zheng Zheng;Zheng Li;Tao Zhou;Jiangtao Cheng - 通讯作者:
Jiangtao Cheng
Jiangtao Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiangtao Cheng', 18)}}的其他基金
EAGER: Unravelling the Spatiotemporal Dynamics of Three-Phase Contact Line on Soft Surfaces by Transmission X-Ray Microscopy
EAGER:通过透射 X 射线显微镜揭示软表面三相接触线的时空动力学
- 批准号:
2133017 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Electrowetting-Tuned Liquid Droplets on Lubricated Superhydrophobic Surfaces for Whispering-Gallery-Mode Sensing
用于耳语画廊模式传感的润滑超疏水表面上的电润湿调谐液滴
- 批准号:
1808931 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
UNS: Experimental and Theoretical Investigation of Thin Film Evaporation in Superhydrophobic-Superhydrophilic Hybrid Micro\Nanotextures
UNS:超疏水-超亲水混合微纳米纹理中薄膜蒸发的实验和理论研究
- 批准号:
1550299 - 财政年份:2015
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
UNS: Experimental and Theoretical Investigation of Thin Film Evaporation in Superhydrophobic-Superhydrophilic Hybrid Micro\Nanotextures
UNS:超疏水-超亲水混合微纳米纹理中薄膜蒸发的实验和理论研究
- 批准号:
1512163 - 财政年份:2015
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant














{{item.name}}会员




