EAGER: Collaborative Research: Models of Child Speech
EAGER:合作研究:儿童言语模型
基本信息
- 批准号:1551113
- 负责人:
- 金额:$ 14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In contrast to the production, modeling, and machine recognition of adult speech, which have been studied for decades, the production, acoustic modeling and recognition of child speech have not received the same level of attention. The lack of scholarly resources for dealing with children's speech is problematic as new applications for child speech and language development become increasingly important and commonplace. This is especially true for elementary school children. As children grow, their articulators grow as well, resulting in variations in their speech sounds. For example, the waveform of the word 'sunny' spoken by a 6-year old can be quite different than that of the same child when she is 9 years old. This is why current machine recognition of children's speech does not perform well for young children and does not scale up as the child grows. That is, these systems tend to be age dependent. Understanding and modeling child speech as children grow is important not only to developing better recognition systems but also for better understanding and diagnosis of speech-language pathology (SLP). As the negative long-term ramifications of deficits in early childhood development gain increasingly broad recognition, the opportunities and the need for social and health services and technological applications targeted toward young children are growing. In particular, it is now understood that early deficits in language development and literacy persist into adulthood, and the demand for SLP services in public schools is significantly outpacing supply. As a result, it is no longer feasible for clinicians and teachers to provide the most effective treatments or the necessary attention to every child. Better speech recognition systems would provide an opportunity for improved diagnosis and more intense computer-based therapy. This Early Grant for Exploratory Research project aims to model how speech and language develop during elementary school and how children with speech disorders differ in their articulation of speech sounds. Models of child speech will lead to the development of computer programs which can be used for educational as well as therapeutic purposes.Scientifically, the exploratory project will 1) reveal processes of speech production development in 20-26 elementary school-aged children through a unique combination of articulatory and acoustic analyses, and 2) develop acoustic models and eventually automatic speech recognition systems for children's speech which can be scalable with age (as opposed to being age-dependent systems). This can only be achieved by understanding how the articulation and corresponding acoustics develop with age. The different aspects of the project are therefore synergistic: findings from articulation and acoustic experiments will inform the development of algorithms essential to automatic speech recognition. Production data will include real-time 3D ultrasound recordings of the tongue, video recordings of the lips, palate impressions, microphone recordings, and accelerometer recordings of neck skin vibrations which have been shown to be beneficial in automatic speech and speaker recognition applications. The causal relationship between articulatory and acoustic variability will be explored, as will their relationship to misrecognition of child speech. Articulatory features will be incorporated into new automatic speech recognition systems along with acoustic features. The exploratory project will contribute to knowledge of variability between children, as well as variability over time as children grow and will provide, for the first time, normative data and scientific models. These can lead to robust child speech recognition systems as well as tools that will be useful for a variety of applications such as educational games, training of speech-language pathologists, automatic or semi-automatic transcription systems, and speech articulation visualization systems. It will train undergraduate and graduate students in important cross-disciplinary activities of technological and scientific significance. We believe that the proposed project is transformative in its advancement of the scientific and technological state of the art related to child speech.
与成人语音的产生、建模和机器识别(已经研究了几十年)相比,儿童语音的产生、声学建模和识别并没有受到同等程度的关注。缺乏学术资源来处理儿童的讲话是有问题的,因为新的应用程序,儿童的讲话和语言发展变得越来越重要和普遍。这对小学生来说尤其如此。随着孩子的成长,他们的发音器官也在成长,这导致了他们说话声音的变化。例如,一个6岁的孩子说出“sunny”这个词的波形可能与同一个孩子9岁时的波形完全不同。这就是为什么目前的儿童语音机器识别对幼儿的表现不佳,并且不会随着儿童的成长而扩大。也就是说,这些系统往往是年龄依赖性的。随着儿童的成长,理解和建模儿童语音不仅对开发更好的识别系统很重要,而且对更好地理解和诊断语音语言病理学(SLP)也很重要。随着幼儿发展缺陷的长期负面影响得到越来越广泛的认识,针对幼儿的社会和保健服务以及技术应用的机会和需求也在增加。特别是,现在人们知道,语言发展和识字的早期缺陷持续到成年,公立学校对SLP服务的需求远远超过供应。因此,临床医生和教师不再能够为每个儿童提供最有效的治疗或必要的关注。更好的语音识别系统将为改善诊断和更密集的计算机治疗提供机会。 这个探索性研究项目的早期补助金旨在模拟小学期间言语和语言的发展以及言语障碍儿童在语音清晰度方面的差异。 儿童语言模型将导致计算机程序的开发,可用于教育以及治疗目的。科学上,探索性项目将1)通过发音和声学分析的独特组合揭示20-26岁小学儿童的语言产生发展过程,以及2)开发声学模型,并最终开发用于儿童语音的自动语音识别系统,该系统可以随年龄而扩展(与依赖于年龄的系统相反)。这只能通过了解发音和相应的声学如何随着年龄的增长而发展来实现。因此,该项目的不同方面是协同的:发音和声学实验的结果将为自动语音识别所必需的算法的开发提供信息。 生产数据将包括舌头的实时3D超声记录,嘴唇的视频记录,腭印象,麦克风记录和颈部皮肤振动的加速度计记录,这些记录已被证明在自动语音和说话人识别应用中是有益的。发音和声学变异之间的因果关系将被探讨,因为他们的关系,以儿童语音识别错误。发音特征将与声学特征一起沿着被纳入新的自动语音识别系统。该探索性项目将有助于了解儿童之间的差异以及随着儿童成长而发生的差异,并将首次提供规范数据和科学模型。这些可以导致强大的儿童语音识别系统以及工具,将是有用的各种应用,如教育游戏,语音语言病理学家的培训,自动或半自动转录系统,语音清晰度可视化系统。它将培养本科生和研究生在重要的跨学科活动的技术和科学意义。我们相信,拟议的项目是变革性的,在其先进的科学和技术的国家有关的儿童语言。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abeer Alwan其他文献
Modeling auditory perception to improve robust speech recognition
建立听觉感知模型以提高稳健的语音识别能力
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
B. Strope;Abeer Alwan - 通讯作者:
Abeer Alwan
Unraveling the associations between voice pitch and major depressive disorder: a multisite genetic study
揭示声音音调与重度抑郁症之间的关联:一项多站点遗传研究
- DOI:
10.1038/s41380-024-02877-y - 发表时间:
2024-12-31 - 期刊:
- 影响因子:10.100
- 作者:
Yazheng Di;Elior Rahmani;Joel Mefford;Jinhan Wang;Vijay Ravi;Aditya Gorla;Abeer Alwan;Kenneth S. Kendler;Tingshao Zhu;Jonathan Flint - 通讯作者:
Jonathan Flint
Optical Phonetics and Visual Percep Stress in Eng
英语中的光学语音和视觉感知压力
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
P. Keating;Marco Baroni;Sven Matty;E. T. Auer;Rebecca Scarborough;Abeer Alwan;E. Bernstein - 通讯作者:
E. Bernstein
Towards Automatically Assessing Children’s Picture Description Tasks
自动评估儿童图片描述任务
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Hariram Veeramani;Natarajan Balaji Shankar;Alexander Johnson;Abeer Alwan - 通讯作者:
Abeer Alwan
An Analysis of Large Language Models for African American English Speaking Children’s Oral Language Assessment
非裔美国英语儿童口语评估大语言模型分析
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Alexander Johnson;Christina Chance;Kaycee Stiemke;Hariram Veeramani;Natarajan Balaji Shankar;Abeer Alwan - 通讯作者:
Abeer Alwan
Abeer Alwan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abeer Alwan', 18)}}的其他基金
Collaborative Research: Improving speech technology for better learning outcomes: the case of AAE child speakers
协作研究:改进语音技术以获得更好的学习成果:AAE 儿童扬声器的案例
- 批准号:
2202585 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: From Ultrasound and MRI to articulatory and acoustic models of child speech development
合作研究:RI:小型:从超声和 MRI 到儿童言语发展的发音和声学模型
- 批准号:
2006979 - 财政年份:2020
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Workshop for Undergraduate and MS Female Students in Speech Science and Technology
语音科学与技术本科生和女硕士讲习班
- 批准号:
1745166 - 财政年份:2017
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Development, Deployment and Evaluation of Personalized Learning Companion Robots for Early Literacy and Language Learning
NRI:INT:COLLAB:用于早期识字和语言学习的个性化学习伴侣机器人的开发、部署和评估
- 批准号:
1734380 - 财政年份:2017
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Variance and Invariance in Voice Quality: Implications for Machine and Human Speaker Identification
RI:媒介:协作研究:语音质量的方差和不变性:对机器和人类说话人识别的影响
- 批准号:
1704167 - 财政年份:2017
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
A Workshop for Junior Female Researchers in Speech Science and Technology
语音科学与技术青年女性研究员研讨会
- 批准号:
1637240 - 财政年份:2016
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
The Role of Speech Science in Developing Robust Speech Technology Applications
语音科学在开发强大的语音技术应用中的作用
- 批准号:
1543522 - 财政年份:2015
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
EAGER: Variance and Invariance in Voice Quality
EAGER:语音质量的方差和不变性
- 批准号:
1450992 - 财政年份:2014
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Towards Modeling Human Speech Confusions in Noise
EAGER:协作研究:对噪声中的人类语音混乱进行建模
- 批准号:
1247809 - 财政年份:2012
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
RI: Small: A New Voice Source Model: From Glottal Areas to Better Speech Synthesis
RI:Small:一种新的语音源模型:从声门区域到更好的语音合成
- 批准号:
1018863 - 财政年份:2010
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant