CAREER: Discriminative Spatiotemporal Models for Recognizing Humans, Objects, and their Interactions

职业:识别人类、物体及其交互的判别时空模型

基本信息

  • 批准号:
    1551290
  • 负责人:
  • 金额:
    $ 10.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

One of the goals of computer vision is to build a system that can see people and recognize their activities. Human actions are rarely performed in isolation -- the surrounding environment, nearby objects, and nearby humans affect the nature of the performed activity.Examples include actions such as "eating" and "shaking hands." The research goal of this project is to approach human performance in understanding videos of activities defined by human-object and human-human interactions.This project makes use of structured, contextual representations to make predictions given spatiotemporal data. It does so by extending recent successful work on object recognition to the space-time domain, introducing extensions for spatiotemporal grouping and contextual modeling. Video enables the extraction of additional dynamic cues absent in static images, but this poses additional computational burdens that are addressed through algorithmic innovations for approximate parsing and large-scale discriminative learning.To place activity recognition on firm quantitative ground, the proposed models are evaluated using concrete metrics based on activities of daily living (ADL) and human proxemic models from the medical and anthropological communities. Examples include systems for automated monitoring of stroke patients interacting with everyday objects and automated analysis of crisis response team interactions during emergency drills. This project produces non-scripted, real-world, labeled action recognition datasets, of benefit to the research community as a whole.
计算机视觉的目标之一是建立一个可以看到人并识别其活动的系统。人类的行为很少是孤立的--周围的环境、附近的物体和附近的人都会影响所执行的活动的性质,例如“吃东西”和“握手”。“这个项目的研究目标是接近人类在理解由人-物和人-人交互定义的活动视频方面的表现。这个项目利用结构化的上下文表示来预测给定的时空数据。它这样做是通过扩展最近成功的工作对象识别的时空域,引入扩展时空分组和上下文建模。视频可以提取额外的动态线索中没有静态图像,但这会带来额外的计算负担,通过近似解析和大规模的判别式learning.To把活动识别在公司的定量地面上的算法创新,提出的模型进行评估,使用具体的指标的基础上的日常生活活动(ADL)和人类的记忆模型从医学和人类学社区。例如,用于自动监控中风患者与日常物品互动的系统,以及在紧急演习期间自动分析危机响应团队互动的系统。该项目产生了非脚本的,真实世界的,标记的动作识别数据集,有利于整个研究界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Deva Ramanan其他文献

Using Segmentation to Verify Object Hypotheses
Recognizing Tiny Faces
识别小脸
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction
ViSER:用于铰接 3D 形状重建的视频特定表面嵌入
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gengshan Yang;Deqing Sun;Varun Jampani;Daniel Vlasic;Forrester Cole;Ce Liu;Deva Ramanan
  • 通讯作者:
    Deva Ramanan
Reconstructing Animatable Categories from Videos
从视频重建动画类别
Forecasting from LiDAR via Future Object Detection
通过未来目标检测从 LiDAR 进行预测

Deva Ramanan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Deva Ramanan', 18)}}的其他基金

RI: Small: Probabilistic Hierarchical Models for Multi-Task Visual Recognition
RI:小型:多任务视觉识别的概率分层模型
  • 批准号:
    1618903
  • 财政年份:
    2016
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
CAREER: Discriminative Spatiotemporal Models for Recognizing Humans, Objects, and their Interactions
职业:识别人类、物体及其交互的判别时空模型
  • 批准号:
    0954083
  • 财政年份:
    2010
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Continuing Grant
RI-Small: Collaborative Research: Discriminative Latent Variable Object Detection
RI-Small:协作研究:判别性潜变量目标检测
  • 批准号:
    0812428
  • 财政年份:
    2008
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant

相似海外基金

Development of Discriminative Pattern Mining Techniques as a Foundation of Human-Centric Machine Learning
判别模式挖掘技术的发展作为以人为中心的机器学习的基础
  • 批准号:
    20K11941
  • 财政年份:
    2020
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
How do we learn? Combining generative and discriminative models for visual and audio perception.
我们如何学习?
  • 批准号:
    488062-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Performance improvement of discriminative distributed Brillouin fiber sensing of temperature/strain
判别式分布式布里渊光纤温度/应变传感性能改进
  • 批准号:
    19K14999
  • 财政年份:
    2019
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of discriminative method for distinguishing between bleeding and thrombotic tendency in cases with prolonged aPTT
开发区分 aPTT 延长病例出血和血栓倾向的判别方法
  • 批准号:
    19K16962
  • 财政年份:
    2019
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
How do we learn? Combining generative and discriminative models for visual and audio perception.
我们如何学习?
  • 批准号:
    488062-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Large-Scale Discriminative Modelling for Data-Intensive Speech and Language Processing
数据密集型语音和语言处理的大规模判别建模
  • 批准号:
    261540-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Discovery Grants Program - Individual
How do we learn? Combining generative and discriminative models for visual and audio perception.
我们如何学习?
  • 批准号:
    488062-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
How do we learn? Combining generative and discriminative models for visual and audio perception.
我们如何学习?
  • 批准号:
    488062-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
RI: Small: Using Automatically Generated Paraphrases and Discriminative ASR Training to Author Robust Question-Answering Dialogue Systems
RI:小型:使用自动生成的释义和判别性 ASR 训练来编写强大的问答对话系统
  • 批准号:
    1618336
  • 财政年份:
    2016
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
Large-Scale Discriminative Modelling for Data-Intensive Speech and Language Processing
数据密集型语音和语言处理的大规模判别建模
  • 批准号:
    261540-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了