EAGER: Collaborative Research: Exploring Models for Conveying Imminent Robot Failures to Allow for Human Intervention
EAGER:协作研究:探索传达即将发生的机器人故障以允许人类干预的模型
基本信息
- 批准号:1552256
- 负责人:
- 金额:$ 10.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this exploratory research, the PIs will seek to advance the state of the science on how best to convey a robot's imminent failure to a human (whether an operator, supervisor, or bystander), in a manner that could allow the human to intervene as effectively as possible to prevent the failure. This project has the potential to dramatically increase the safety of humans in and around autonomous robots and vehicles. Specific goals are to discover design principles for robot systems with respect to conveying failure, and to identify methods for expressing failure so that humans react appropriately. The research will focus on three use cases: remote operation, co-located operation, and bystander interaction. To these ends, the team will utilize a variety of robots in order to support different applications and movement scales. Robots available to the team include small and mid-size unmanned ground vehicles, human-scale torso robots, a robot wheelchair, a telepresence robot, and an autonomous Jeep. Project outcomes will impact the field of human-robot interaction and the future use of robots in many application domains, particularly those of mobile and manipulation robots, including autonomous vehicles, factory robots, and assistive technology, by enhancing productivity and task performance, increasing personal safety for those who work in hazardous occupations, and improving the lives of persons with disabilities.The PIs' core research questions are informed by their substantial prior work with task-oriented robots. Based on that experience and other studies, they argue that the following three main factors strongly influence user actions during robot failure: perceived risk (e.g., a robot that crashes frequently is generally perceived as a high risk robot), perceived severity (e.g., the failure of a small robot made of soft materials is generally perceived as less severe than that of a full body humanoid robot), and role (e.g., is the user an operators or a bystander). Unexplored research questions about the manner in which these factors impact failure include. How do these factors, both independently and in combination, influence HRI during robot failures? How do humans utilize these factors during robot failure, and does this utilization have high variability or are humans very consistent? These factors will be used as independent variables during studies which will advance knowledge in three core areas: formulation and validation of generalizable quantitative and qualitative metrics for measuring a person's response to an imminent failure in a robot system; discovery of appropriate ways to communicate failure states to humans; and initial development of common design guidelines for handling failures. The primary goal is to make it easier for humans to rapidly understand failure events and to act or assist appropriately in a timely manner. The PIs are specifically focused on the human-robot interaction aspect of robot failures. As such, they will track literature and research on diagnosing failures, but will not develop new systems or concepts for this step. Instead, the team will seek appropriate and effective ways to convey failures to humans, appropriate human responses during failures, and appropriate failure states when human action is not possible or is insufficient.
在这项探索性研究中,PI 将寻求推进科学发展,了解如何最好地将机器人即将发生的故障传达给人类(无论是操作员、主管还是旁观者),从而使人类能够尽可能有效地进行干预以防止故障。该项目有可能显着提高自动机器人和车辆及其周围人类的安全性。 具体目标是发现机器人系统在输送故障方面的设计原则,并确定表达故障的方法,以便人类做出适当的反应。 该研究将重点关注三个用例:远程操作、同地操作和旁观者互动。 为此,该团队将利用各种机器人来支持不同的应用和运动规模。 该团队可用的机器人包括中小型无人地面车辆、人体躯干机器人、机器人轮椅、远程呈现机器人和自动吉普车。 项目成果将通过提高生产力和任务绩效、提高危险职业人员的人身安全以及改善残疾人的生活,影响人机交互领域以及机器人在许多应用领域的未来使用,特别是移动和操纵机器人,包括自动驾驶车辆、工厂机器人和辅助技术。项目负责人的核心研究问题来自于他们之前在任务导向型机器人方面的大量工作。 基于这些经验和其他研究,他们认为以下三个主要因素强烈影响机器人故障期间的用户行为:感知风险(例如,经常崩溃的机器人通常被认为是高风险机器人)、感知严重性(例如,由软材料制成的小型机器人的故障通常被认为不如全身人形机器人严重)和角色(例如,用户是操作员还是旁观者)。 关于这些因素影响失败的方式的尚未探索的研究问题包括。 这些因素(无论是独立的还是组合的)在机器人故障期间如何影响 HRI? 在机器人故障期间,人类如何利用这些因素?这种利用是否具有很大的可变性,或者人类是否非常一致? 这些因素将在研究过程中用作自变量,这将推进三个核心领域的知识:制定和验证可概括的定量和定性指标,用于测量人对机器人系统即将发生故障的反应;发现向人类传达故障状态的适当方法;以及初步制定处理故障的通用设计指南。 主要目标是让人们更容易快速理解故障事件并及时采取适当的行动或提供帮助。 PI 特别关注机器人故障的人机交互方面。 因此,他们将跟踪有关诊断故障的文献和研究,但不会为此步骤开发新的系统或概念。 相反,团队将寻求适当且有效的方法来向人类传达故障、故障期间适当的人类响应以及人类行动不可能或不充分时的适当故障状态。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Steinfeld其他文献
Robot Trajectories When Approaching a User with a Visual Impairment
接近有视觉障碍的用户时的机器人轨迹
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jirachaya "Fern" Limprayoon;Prithu Pareek;Xiang Zhi Tan;Aaron Steinfeld - 通讯作者:
Aaron Steinfeld
Robot confidence and trust alignment
机器人信心和信任一致性
- DOI:
10.1109/hri.2013.6483548 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Poornima Kaniarasu;Aaron Steinfeld;Munjal Desai;H. Yanco - 通讯作者:
H. Yanco
A Task-Oriented Dialogue Architecture via Transformer Neural Language Models and Symbolic Injection
通过 Transformer 神经语言模型和符号注入的面向任务的对话架构
- DOI:
10.18653/v1/2021.sigdial-1.46 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Oscar J. Romero;Antian Wang;J. Zimmerman;Aaron Steinfeld;A. Tomasic - 通讯作者:
A. Tomasic
Towards Robot Autonomy in Group Conversations: Understanding the Effects of Body Orientation and Gaze
在小组对话中实现机器人自主:了解身体方向和视线的影响
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Marynel Vázquez;E. Carter;Braden McDorman;J. Forlizzi;Aaron Steinfeld;S. Hudson - 通讯作者:
S. Hudson
Slightly Subversive Methods for Promoting Use of Autonomy in Robots
促进机器人自主性使用的轻微颠覆性方法
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Aaron Steinfeld - 通讯作者:
Aaron Steinfeld
Aaron Steinfeld的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Steinfeld', 18)}}的其他基金
NRI: FND: Mutually Aware Social Navigation
NRI:FND:相互感知的社交导航
- 批准号:
1734361 - 财政年份:2017
- 资助金额:
$ 10.95万 - 项目类别:
Standard Grant
NRI: Small: Assistive Robots for Blind Travelers
NRI:小型:盲人旅行者辅助机器人
- 批准号:
1317989 - 财政年份:2013
- 资助金额:
$ 10.95万 - 项目类别:
Standard Grant
HCC: Medium: Collaborative Research: Development of Trust Models and Metrics for Human-Robot Interaction
HCC:媒介:协作研究:人机交互信任模型和指标的开发
- 批准号:
0905148 - 财政年份:2009
- 资助金额:
$ 10.95万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
Standard Grant