CAREER: FAST methods for protein folding and design
职业:蛋白质折叠和设计的快速方法
基本信息
- 批准号:1552471
- 负责人:
- 金额:$ 64.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Title: CAREER: FAST methods for protein folding and designProteins are molecular machines that are largely responsible for processes as varied as digestion of food to building new components of cells. Many proteins are capable of spontaneously folding from an extended chain into compact, functional machines. Once folded, proteins continue to undergo motions that are related to their stability and function. Understanding the functional relevance of these motions remains extremely challenging because it is difficult to observe movement on the atomic scale and provide the necessary structural detail to connect these motions with a protein's function. The objectives of this project are 1) to develop powerful algorithms for simulating these protein motions, 2) apply these algorithms to understand how proteins fold, and 3) to combine these algorithms with biochemical experiments to design proteins that are more stable than their natural counterparts. Completion of this research will lay the foundation for future efforts to understand the role of protein motions in processes like cellular communications and to design proteins for applications such as the synthesis of biofuels. In concert with these research objectives, the PI will develop a python programming boot camp to teach students in biology the basic programming skills required to analyze their own data, providing a starting point for more sophisticated integration of computation and experiments and opening new job opportunities in the STEM fields. This project will identify general properties of free energy landscapes of proteins from simulation datasets created with specialized hardware and leverage them to empower similar studies with commodity hardware. This work will be guided by the hypothesis that leveraging ideas from optimization theory regarding exploration/exploitation tradeoffs will allow efficient conformational searches. Based on preliminary analyses, the PI's lab has already begun to prototype a new algorithm, referred to as fluctuation amplification of specific traits, or FAST. Further developing this algorithm, demonstrating its power, and disseminating it to the broader scientific community will lay a foundation for understanding and designing protein's conformational ensembles. Specific goals include: 1) develop the fluctuation amplification of specific traits (FAST) algorithm to efficiently explore a protein's conformational space, 2) test whether FAST can fold proteins, and 3) test whether FAST can reveal opportunities for designing stabilized proteins without perturbing their functions.This project is jointly funded by the Molecular Biophysics Cluster in the Division of Molecular and Cellular Biosciences in the Directorate for Biological Sciences and the Physics of Living Systems Program in the Division of Physics in the Directorate of Mathematical and Physical Sciences.
标题:职业:蛋白质折叠和设计的快速方法蛋白质是分子机器,主要负责从食物消化到构建细胞新成分等各种过程。许多蛋白质能够自发地从延伸的链折叠成紧凑的功能机器。蛋白质一旦折叠,就会继续进行与其稳定性和功能相关的运动。理解这些运动的功能相关性仍然极具挑战性,因为很难在原子尺度上观察运动并提供必要的结构细节来将这些运动与蛋白质的功能联系起来。该项目的目标是1)开发强大的算法来模拟这些蛋白质运动,2)应用这些算法来理解蛋白质如何折叠,以及3)将这些算法与生化实验相结合,以设计比自然对应物更稳定的蛋白质。这项研究的完成将为未来的努力奠定基础,以了解蛋白质运动在细胞通讯等过程中的作用,并为生物燃料合成等应用设计蛋白质。为了配合这些研究目标,PI将开发一个python编程训练营,教生物学专业的学生分析自己数据所需的基本编程技能,为更复杂的计算和实验集成提供起点,并为STEM领域开辟新的工作机会。该项目将从专用硬件创建的模拟数据集中识别蛋白质自由能景观的一般属性,并利用它们为使用商用硬件的类似研究提供支持。这项工作将以假设为指导,即利用关于勘探/开发权衡的优化理论的思想将允许有效的构象搜索。在初步分析的基础上,PI的实验室已经开始设计一种新算法的原型,称为特定特征波动放大(FAST)。进一步发展该算法,展示其力量,并将其传播到更广泛的科学界,将为理解和设计蛋白质的构象集合奠定基础。具体目标包括:1)开发特定性状的波动放大(FAST)算法,以有效地探索蛋白质的构象空间;2)测试FAST是否可以折叠蛋白质;3)测试FAST是否可以在不干扰其功能的情况下揭示设计稳定蛋白质的机会。该项目由生物科学理事会分子和细胞生物科学部的分子生物物理集群和数学与物理科学理事会物理部的生命系统物理学项目共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Bowman其他文献
Diffnets for Deep Learning the Structural Determinants of Proteins Biochemical Properties by Comparing Different Structural Ensembles
- DOI:
10.1016/j.bpj.2020.11.1910 - 发表时间:
2021-02-12 - 期刊:
- 影响因子:
- 作者:
Michael D. Ward;Maxwell Zimmerman;S. Joshua Swamidass;Gregory Bowman - 通讯作者:
Gregory Bowman
Slide-seq: Probing Sequence-Dependence of Chromatin Remodeling Activities in High Throughput
- DOI:
10.1016/j.bpj.2017.11.3084 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Sangwoo Park;Jessica Winger;Gregory Bowman;Taekjip Ha - 通讯作者:
Taekjip Ha
Characterizing blebbistatin pocket conformational dynamics with Markov state models
- DOI:
10.1016/j.bpj.2021.11.1441 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Borna Novak;Artur Meller;Gregory Bowman - 通讯作者:
Gregory Bowman
Single-molecule fluorescence spectroscopy of apolipoprotein E
- DOI:
10.1016/j.bpj.2021.11.1841 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Melissa D. Stuchell-Brereton;Maxwell I. Zimmerman;Upasana L. Mallimadugula;J. Jeremias Incicco;Debjit Roy;Berevan Baban;Gregory T. DeKoster;Gregory Bowman;Carl Frieden;Andrea Soranno - 通讯作者:
Andrea Soranno
Fast Conformational Searches to Characterize the Effects of Mutations on Complex Landscapes
- DOI:
10.1016/j.bpj.2019.11.1234 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Maxwell I. Zimmerman;Gregory Bowman - 通讯作者:
Gregory Bowman
Gregory Bowman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Bowman', 18)}}的其他基金
Decrypting the functional significance of cryptic surfaces by combining simulations and experiments
通过结合模拟和实验来解密神秘表面的功能意义
- 批准号:
2218156 - 财政年份:2022
- 资助金额:
$ 64.24万 - 项目类别:
Standard Grant
RAPID: Folding@home and COVID-19
RAPID:Folding@home 和 COVID-19
- 批准号:
2032663 - 财政年份:2020
- 资助金额:
$ 64.24万 - 项目类别:
Standard Grant
相似国自然基金
基于FAST搜寻及观测的脉冲星多波段辐射机制研究
- 批准号:12403046
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:青年科学基金项目
FAST连续观测数据处理的pipeline开发
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于神经网络的FAST馈源融合测量算法研究
- 批准号:12363010
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
使用FAST开展河外中性氢吸收线普查
- 批准号:12373011
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
- 批准号:12373107
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
基于FAST观测的重复快速射电暴的统计和演化研究
- 批准号:12303042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用FAST漂移扫描多科学目标同时巡天宽带谱线数据研究星系中性氢质量函数
- 批准号:12373012
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于FAST望远镜及超级计算的脉冲星深度搜寻和研究
- 批准号:12373109
- 批准年份:2023
- 资助金额:55.00 万元
- 项目类别:面上项目
基于FAST高灵敏度和高谱分辨中性氢数据的暗星系的系统搜寻与研究
- 批准号:12373001
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于FAST的纳赫兹引力波研究
- 批准号:LY23A030001
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Fast-kinetics approaches to define direct gene-regulatory functions of MYB in leukemia
快速动力学方法定义 MYB 在白血病中的直接基因调控功能
- 批准号:
10644259 - 财政年份:2023
- 资助金额:
$ 64.24万 - 项目类别:
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
- 批准号:
10735946 - 财政年份:2023
- 资助金额:
$ 64.24万 - 项目类别:
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 64.24万 - 项目类别:
Fast Multi-Functional 3D Imaging of Cellular Activities in Deep Tissue
深层组织细胞活动的快速多功能 3D 成像
- 批准号:
10861526 - 财政年份:2023
- 资助金额:
$ 64.24万 - 项目类别:
Strep-CaDI: A fast, accurate, and sensitive point-of-care test for Group A Streptococcus
Strep-CaDI:快速、准确且灵敏的 A 组链球菌现场检测
- 批准号:
10699852 - 财政年份:2023
- 资助金额:
$ 64.24万 - 项目类别:
FastPlex: A Fast Deep Learning Segmentation Method for Accurate Choroid Plexus Morphometry
FastPlex:一种用于精确脉络丛形态测量的快速深度学习分割方法
- 批准号:
10734956 - 财政年份:2023
- 资助金额:
$ 64.24万 - 项目类别:
Nascent protein degradation-based fast homeostatic mechanism mediated by neuronal membrane proteasomes
神经元膜蛋白酶体介导的基于新生蛋白降解的快速稳态机制
- 批准号:
10717075 - 财政年份:2023
- 资助金额:
$ 64.24万 - 项目类别:
Fast Field Screening of PFAS in Non-Portable Waters..
非饮用水中 PFAS 的快速现场筛查..
- 批准号:
10696936 - 财政年份:2023
- 资助金额:
$ 64.24万 - 项目类别:
A nanosized magnetic particle system for fast and efficient neuronal extracellular vesicle enrichment from plasma
一种纳米磁性粒子系统,用于从血浆中快速有效地富集神经元细胞外囊泡
- 批准号:
10820640 - 财政年份:2023
- 资助金额:
$ 64.24万 - 项目类别: