CAREER: Knowledge Representation and Re-Use for Exploratory and Collaborative Search
职业:探索性和协作搜索的知识表示和重用
基本信息
- 批准号:1552587
- 负责人:
- 金额:$ 54.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern search systems work well when looking for specific information, but do little to support exploratory searches that extend across multiple search sessions and have investigation and learning as primary goals. Current search systems provide few ways for users to capture, re-use, and resume their search efforts, little support for discovering structural information about a topic, and few methods for coordination and knowledge sharing among searchers. As a result, users often begin searches isolated from knowledge about the domain and effective search processes that others have already discovered, and groups working collaboratively on a search must invest considerable manual effort to communicate and coordinate their efforts using channels outside the search system. This research will develop and evaluate novel techniques and interfaces to allow users to capture, save, share, and re-use structured information about search tasks, search processes, and domain information. A central innovation in this research will be the integration of template structures (including lists, hierarchies, two-dimensional grids, and concept maps) into the user interface and underlying search system in order help users save and organize the information they discover. This structured information will then be used by the system to help support the future searches of individuals and groups of users working collaboratively.This research will answer questions about how search systems can incorporate methods to capture, share, and re-use knowledge developed during searches to help improve the future search activities of individuals, collaborating groups, and other searchers working on similar tasks. The research will explore new search algorithms and interfaces that leverage structured information about the search to help users with task resumption, coordination of collaborative efforts, discovery of topic structures, and knowledge sharing. The results will provide insights about users' needs for exploratory searches and how systems can best support them. Specifically, five objectives will be addressed. (1) User studies will be conducted to understand how information structures are naturally created and used in different types of search tasks. (2) An experimental search system will be designed and implemented to support the creation, capture, and use of structured search information to help users with exploratory search tasks. (3) Using the experimental search system, studies will be conducted to understand the benefits of different types of template structures for the purpose of saving information for different types of search tasks (e.g., learning, planning, decision-making, collecting). (4) Additional studies will be conducted to understand how existing structured search information can be used to help support individual users in task resumption, collaborating groups of users in coordinating their efforts, and as a form of search assistance for users working on similar tasks. (5) The final objective of this work will investigate methods for identifying and ranking searches that are related to the current search based on the structured search information and other search interaction data. This research will significantly improve the tools and methods for exploratory and collaborative search, and will provide empirical results to guide future search user interfaces and system development. The outcomes of this project will have substantial transformative impact in helping users to discover new information and topic structures, make sense of the information they find, and build from the prior search efforts of others. Results and software developed as part of the project will be disseminated through papers published in top-tier conferences and journals, and will be made available on the project website (http://ils.unc.edu/searchstructures/).
现代搜索系统在寻找特定信息时工作良好,但对于跨多个搜索会话扩展并将调查和学习作为主要目标的探索性搜索,却做得很少。目前的搜索系统提供了一些方法,让用户捕捉,重用,并恢复他们的搜索努力,很少支持发现结构信息的主题,和一些方法,搜索者之间的协调和知识共享。结果,用户通常开始搜索,而不了解其他人已经发现的关于域和有效搜索过程的知识,并且协作进行搜索的组必须投入相当大的手动努力来使用搜索系统之外的信道来通信和协调他们的努力。这项研究将开发和评估新的技术和界面,使用户能够捕捉,保存,共享和重用结构化的信息搜索任务,搜索过程和域信息。本研究的一个核心创新是将模板结构(包括列表、层次结构、二维网格和概念图)集成到用户界面和底层搜索系统中,以帮助用户保存和组织他们发现的信息。这些结构化的信息将被系统用来帮助支持未来的搜索个人和用户群体的合作working.This研究将回答有关搜索系统如何结合方法来捕获,共享和重用搜索过程中开发的知识,以帮助改善未来的搜索活动的个人,合作团体,和其他搜索类似的任务。该研究将探索新的搜索算法和界面,利用有关搜索的结构化信息,帮助用户恢复任务,协调协作努力,发现主题结构和知识共享。结果将提供有关用户探索性搜索需求以及系统如何最好地支持他们的见解。具体而言,将实现五个目标。(1)将进行用户研究,以了解信息结构是如何自然地创建和使用在不同类型的搜索任务。(2)一个实验性的搜索系统将被设计和实现,以支持创建,捕获和使用结构化的搜索信息,以帮助用户进行探索性的搜索任务。(3)使用实验搜索系统,将进行研究,以了解不同类型的模板结构的好处,以便为不同类型的搜索任务保存信息(例如,学习、规划、决策、收集)。(4)将进行更多的研究,以了解如何利用现有的结构化搜索信息,以帮助支持个人用户在任务恢复,协作组的用户在协调他们的努力,并作为一种形式的搜索帮助用户在类似的任务工作。(5)这项工作的最终目标将调查的方法来识别和排名的搜索相关的结构化搜索信息和其他搜索交互数据的基础上,当前的搜索。这项研究将显着改善探索性和协作搜索的工具和方法,并将提供实证结果,以指导未来的搜索用户界面和系统开发。该项目的成果将在帮助用户发现新的信息和主题结构,理解他们找到的信息,并从其他人之前的搜索努力中构建方面产生重大的变革性影响。作为项目一部分开发的成果和软件将通过在顶级会议和期刊上发表的论文传播,并将在项目网站(http://ils.unc.edu/searchstructures/)上提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Capra其他文献
Robert Capra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Capra', 18)}}的其他基金
III: Small: Search Assistance Using Search Trails
III:小:使用搜索轨迹进行搜索协助
- 批准号:
1718295 - 财政年份:2017
- 资助金额:
$ 54.62万 - 项目类别:
Standard Grant
相似海外基金
CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
- 批准号:
2348147 - 财政年份:2024
- 资助金额:
$ 54.62万 - 项目类别:
Standard Grant
CAREER: Digitize and Simulate the Large Physical World via Knowledge-Grounded Scene Representation
职业:通过基于知识的场景表示对大型物理世界进行数字化和模拟
- 批准号:
2340254 - 财政年份:2024
- 资助金额:
$ 54.62万 - 项目类别:
Continuing Grant
Travel: RI: Small: Student Travel Grant for 20th International Conference on Principles of Knowledge Representation and Reasoning and Doctoral Consortium
旅费:RI:小额:第 20 届知识表示和推理原理及博士联盟国际会议学生旅费补助
- 批准号:
2328173 - 财政年份:2023
- 资助金额:
$ 54.62万 - 项目类别:
Standard Grant
Cross-Lingual Knowledge Representation and Alignment in LLMs
法学硕士中的跨语言知识表示和协调
- 批准号:
2876276 - 财政年份:2023
- 资助金额:
$ 54.62万 - 项目类别:
Studentship
Representation Learning for Large Knowledge Graph Completion
大型知识图补全的表示学习
- 批准号:
2739427 - 财政年份:2022
- 资助金额:
$ 54.62万 - 项目类别:
Studentship
Knowledge Representation and Reasoning: Pushing the Frontier
知识表示和推理:推动前沿
- 批准号:
RGPIN-2020-05211 - 财政年份:2022
- 资助金额:
$ 54.62万 - 项目类别:
Discovery Grants Program - Individual
Knowledge Representation and Information Security
知识表示和信息安全
- 批准号:
RGPIN-2019-04251 - 财政年份:2022
- 资助金额:
$ 54.62万 - 项目类别:
Discovery Grants Program - Individual
Knowledge Representation and Reasoning: Pushing the Frontier
知识表示和推理:推动前沿
- 批准号:
RGPIN-2020-05211 - 财政年份:2021
- 资助金额:
$ 54.62万 - 项目类别:
Discovery Grants Program - Individual
Scalable Knowledge Representation and Solving
可扩展的知识表示和解决
- 批准号:
RGPIN-2017-06018 - 财政年份:2021
- 资助金额:
$ 54.62万 - 项目类别:
Discovery Grants Program - Individual
Representation of facility engineers' knowledge and experiences using building information models that have information of building components and networks between building components
使用具有建筑组件和建筑组件之间网络信息的建筑信息模型来表示设施工程师的知识和经验
- 批准号:
21K14328 - 财政年份:2021
- 资助金额:
$ 54.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




