CAREER: Biological Timing and Brain Circuits: Circadian influences on Prefrontal Cortex function
职业:生物计时和大脑回路:昼夜节律对前额皮质功能的影响
基本信息
- 批准号:1553067
- 负责人:
- 金额:$ 83.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-15 至 2020-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The rotation of the Earth provides one of the most salient environmental signals: the circadian (daily) alternation of night and day. Nearly all terrestrial organisms, from single-celled to multi-cellular species, possess internal biological clocks allowing for synchronization of internal processes with the environment. In mammals (including humans), a master circadian clock in the brain synchronizes other clocks throughout the brain and body, maintaining temporal organization in the whole organism. The importance of these clocks becomes apparent during times of temporal disruption, with the degradation of circadian rhythms associated with numerous negative health effects. However, to fully understand how "broken" clocks cause negative effects, understanding how they promote optimal function under normal circumstances is necessary. The goal of this research is to understand how circadian clocks promote normal functioning of brain circuits important in complex behaviors like decision making, attention, and cognitive flexibility. A mouse model is used to investigate how normal or disrupted circadian rhythms regulate the size, shape, and function of neurons in the brain, and how these changes affect cognition. Advanced techniques in the measurement of brain chemistry, imaging, 3-dimensional reconstruction of neurons, and pharmacology is used to help understand how circadian clocks maintain normal function, and how disrupted clocks lead to negative outcomes. An integral component of this award engages rural and urban undergraduate students in outreach involving the Mobius Science Center and Children's Museum in Spokane, helping increase awareness of how biological clocks affect physiological function, from the simplest organisms, to our own brain.Significant inroads have been made in understanding the cellular and molecular function of the suprachiasmatic nucleus (SCN) circadian clock. However, the fundamental role of circadian rhythms in brain areas underlying complex behaviors, such as the prefrontal cortex (PFC), remains illusive. Using environmental circadian disruption as a tool, this research determines how circadian rhythms modulate normal PFC function at the behavioral, physiological, structural, and biochemical levels. This research builds upon our findings that circadian disruption impairs cognitive flexibility and causes atrophy of PFC neurons. The overarching hypothesis of this project is that circadian rhythms promote normal PFC function primarily through modulation of glutamatergic signaling, since glutamate is crucial for optimal PFC function. Circadian disruption effects on the PFC is determined by examining PFC mediated behaviors, and through the use of implantable biosensors to determine effects on extra-cellular PFC glutamate in real time. To establish a causal role for glutamate, pharmacological manipulation of PFC AMPA and NMDA signaling is undertaken. Confocal microscopy and 3-D reconstruction of PFC neurons is used to investigate circadian changes in neural morphology and dendritic spines, primary sites of excitatory signaling. Biochemical studies determine how normal and abnormal circadian rhythms drive membrane trafficking of glutamate receptors, providing another substrate on which circadian rhythms may act to modulate PFC function. The third and final experimental aim is to determine whether changes in a rhythmic hormone (corticosterone) mediates these effects, which would provide a mechanism by which normal and disrupted timing cues are relayed to extra-SCN brain regions.
地球的自转提供了最显著的环境信号之一:昼夜的昼夜交替。几乎所有的陆地生物,从单细胞到多细胞物种,都拥有内部生物钟,允许内部过程与环境同步。在哺乳动物(包括人类)中,大脑中的主生物钟与大脑和身体中的其他生物钟同步,维持整个生物体的时间组织。这些时钟的重要性在时间中断期间变得明显,昼夜节律的退化与许多负面的健康影响有关。然而,为了充分理解“坏掉的”时钟是如何造成负面影响的,理解它们在正常情况下是如何促进最佳功能的是必要的。这项研究的目的是了解生物钟如何促进大脑回路的正常功能,这些回路在决策,注意力和认知灵活性等复杂行为中很重要。小鼠模型用于研究正常或紊乱的昼夜节律如何调节大脑中神经元的大小,形状和功能,以及这些变化如何影响认知。脑化学测量、成像、神经元三维重建和药理学方面的先进技术用于帮助理解生物钟如何维持正常功能,以及生物钟如何导致负面结果。该奖项的一个组成部分是吸引农村和城市的本科生参与斯波坎的莫比乌斯科学中心和儿童博物馆的外联活动,帮助提高人们对生物钟如何影响生理功能的认识,从最简单的生物体到我们自己的大脑。在理解视交叉上核(SCN)昼夜节律钟的细胞和分子功能方面取得了重大进展。然而,昼夜节律在复杂行为背后的大脑区域(如前额叶皮层(PFC))中的基本作用仍然是虚幻的。本研究以环境昼夜节律紊乱为工具,确定昼夜节律如何在行为、生理、结构和生化水平上调节正常PFC功能。这项研究建立在我们的发现,昼夜节律中断损害认知灵活性,并导致PFC神经元萎缩。该项目的首要假设是,昼夜节律主要通过调节谷氨酸能信号来促进正常PFC功能,因为谷氨酸对最佳PFC功能至关重要。通过检查PFC介导的行为,并通过使用植入式生物传感器来确定对细胞外PFC谷氨酸的影响,从而确定对PFC的昼夜节律干扰作用。为了确定谷氨酸的因果作用,进行PFC AMPA和NMDA信号传导的药理学操纵。PFC神经元的共聚焦显微镜和3-D重建被用来研究神经形态和树突棘的昼夜变化,兴奋性信号的主要站点。生物化学研究确定了正常和异常的昼夜节律如何驱动谷氨酸受体的膜运输,提供了另一种昼夜节律调节PFC功能的底物。第三个也是最后一个实验目的是确定节律激素(皮质酮)的变化是否介导了这些效应,这将提供一种机制,通过这种机制,正常和中断的时间线索被传递到额外的SCN大脑区域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilia Karatsoreos其他文献
Neuroimmune responses to intranasal poly(I:C) are primed by time of day
- DOI:
10.1016/j.bbi.2024.01.050 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:
- 作者:
Gregory Pearson;Brennan Falcy;Jennifer Wang;Nathan Santos;Giancarlo Denaroso;Saïd Akli;Ilia Karatsoreos - 通讯作者:
Ilia Karatsoreos
Neuroimmune activation of the olfactory bulb is regulated by time of day
- DOI:
10.1016/j.bbi.2022.07.084 - 发表时间:
2022-11-01 - 期刊:
- 影响因子:
- 作者:
Gregory Pearson;Brennan Falcy;Jennifer Wang;Said Akli;Ilia Karatsoreos - 通讯作者:
Ilia Karatsoreos
Neuroimmune responses to intranasal poly(I:C) are primed by time of day
- DOI:
10.1016/j.bbi.2024.01.032 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:
- 作者:
Gregory Pearson;Brennan Falcy;Jennifer Wang;Nathan Santos;Giancarlo Denaroso;Saïd Akli;Ilia Karatsoreos - 通讯作者:
Ilia Karatsoreos
Ilia Karatsoreos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilia Karatsoreos', 18)}}的其他基金
Conference: Society for Research on Biological Rhythms: From Molecules to Policy
会议:生物节律研究学会:从分子到政策
- 批准号:
2217675 - 财政年份:2022
- 资助金额:
$ 83.06万 - 项目类别:
Standard Grant
CAREER: Biological Timing and Brain Circuits: Circadian influences on Prefrontal Cortex function
职业:生物计时和大脑回路:昼夜节律对前额皮质功能的影响
- 批准号:
2042207 - 财政年份:2020
- 资助金额:
$ 83.06万 - 项目类别:
Continuing Grant
The SRBR 2018 Meeting: Fostering Training and Diversity in Biological Rhythms Research: Omni Amelia Island Plantation Resort, in Florida, May 12-16, 2018
SRBR 2018 会议:促进生物节律研究的培训和多样性:奥姆尼阿米莉亚岛种植园度假村,佛罗里达州,2018 年 5 月 12 日至 16 日
- 批准号:
1822042 - 财政年份:2018
- 资助金额:
$ 83.06万 - 项目类别:
Standard Grant
相似海外基金
Conference: Society for Research on Biological Rhythms (SRBR): Timing from Cells to Clinics: San Juan, Puerto Rico May 18th - May 23rd, 2024
会议:生物节律研究协会 (SRBR):从细胞到诊所的计时:波多黎各圣胡安 2024 年 5 月 18 日至 5 月 23 日
- 批准号:
2416046 - 财政年份:2024
- 资助金额:
$ 83.06万 - 项目类别:
Standard Grant
CAREER: Biological Timing and Brain Circuits: Circadian influences on Prefrontal Cortex function
职业:生物计时和大脑回路:昼夜节律对前额皮质功能的影响
- 批准号:
2042207 - 财政年份:2020
- 资助金额:
$ 83.06万 - 项目类别:
Continuing Grant
Understanding the impact of environmental disruption in biological timing systems through signal processing.
通过信号处理了解环境破坏对生物计时系统的影响。
- 批准号:
9386306 - 财政年份:2017
- 资助金额:
$ 83.06万 - 项目类别:
Molecular mechanisms of biological timers that determine developmental timing and environmental effects in Drosophila
决定果蝇发育时间和环境影响的生物定时器的分子机制
- 批准号:
17K07412 - 财政年份:2017
- 资助金额:
$ 83.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effects of meal timing on biological rhythms and clock gene expression
进餐时间对生物节律和时钟基因表达的影响
- 批准号:
17K17911 - 财政年份:2017
- 资助金额:
$ 83.06万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The biological origins underpinning adolescent sleep timing
青少年睡眠时间的生物学起源
- 批准号:
DP150100215 - 财政年份:2015
- 资助金额:
$ 83.06万 - 项目类别:
Discovery Projects
Biological invasions in lakes - genetic diversity, timing and local adaptation
湖泊生物入侵——遗传多样性、时间和当地适应
- 批准号:
250015247 - 财政年份:2014
- 资助金额:
$ 83.06万 - 项目类别:
Research Grants
Biological resonance: matching internal timing to environmental fluctuations
生物共振:将内部时间与环境波动相匹配
- 批准号:
BB/J017744/1 - 财政年份:2013
- 资助金额:
$ 83.06万 - 项目类别:
Research Grant
Mutual interactions between biological timing and innate immunity in Arabidopsis
拟南芥生物计时与先天免疫之间的相互作用
- 批准号:
71247354 - 财政年份:2008
- 资助金额:
$ 83.06万 - 项目类别:
Research Grants
Molecular mechanism of biological timer-determination mechanism of pupation timing of Drosophila-
生物定时器的分子机制——果蝇化蛹时机的决定机制——
- 批准号:
20570204 - 财政年份:2008
- 资助金额:
$ 83.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)