CAREER: Categorical Representation Theory of Hecke Algebras
职业:赫克代数的分类表示论
基本信息
- 批准号:1553032
- 负责人:
- 金额:$ 46.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Representation theory is, roughly speaking, the study of groups of symmetries. For example, a mirror on a wall can help to visualize a reflection of 3-dimensional space, a symmetry which sends each point in our world to the corresponding point on the other side of the mirror. Coxeter groups are special kinds of groups of symmetries that consist of sequences of reflections through mirrors placed at precise angles to one another. The so-called "crystallographic" Coxeter groups occur frequently in physics and mathematics because they preserve lattice points, for example the locations of atoms in a crystal. Crystallographic Coxeter groups also arise when analyzing important geometric spaces; this imbues them with a great deal of interesting structure. Mysteriously, Coxeter groups which are not crystallographic still possess this beautiful structure, despite having no geometric explanation. For example, each Coxeter group has an associated Hecke algebra, and by multiplying elements in this algebra one can produce numbers called structure coefficients. For crystallographic Coxeter groups, these coefficients are always non-negative because they are counting something. However, the non-negativity result holds in general. An underlying goal of this project is to find combinatorial and algebraic descriptions of the structures apparent in Coxeter groups, to help explain these mysterious phenomena. The main objects of study are categorical representations of Hecke algebras, where usual reflections are replaced by "reflection functors" that act as symmetries not on some n-dimensional space, but on spaces attached to representations of other important algebras in mathematics.In this research project the categorical representation theory of Hecke algebras will be investigated along three lines of attack. The first approach is to lift the notion of diagonalization from linear algebra to categorical representation theory. For example, the full twist in the braid group, and its image in the Hecke algebra, is diagonalizable in any finite dimensional representation. In joint work with Hogancamp, I aim to prove that the categorified full twist is "categorically  diagonalizable." This allows one to lift much of the structure  theory of Hecke algebra representations to the categorical level.  In the second approach, together with Williamson and Juteau, I will study certain categorical representations of affine Weyl groups which are significant for modular representation theory, and their quantum deformations. The goal is to compute local intersection forms, which will explain how the category degenerates in finite characteristic. This computation will give character formulas for modular representations of algebraic groups which were previously unknown. In the third approach, together with Young, I will find an algebraic description of the quantum deformation mentioned above, when the quantum parameter is a root of unity. This is related to the categorification of complex reflection groups, which is an open problem.
粗略地说,表示论是对对称群的研究。例如,墙上的镜子可以帮助可视化 3 维空间的反射,这种对称性将我们世界中的每个点发送到镜子另一侧的相应点。考克塞特群是一种特殊的对称群,由通过彼此精确角度放置的镜子的反射序列组成。所谓的“晶体学”考克塞特群经常出现在物理和数学中,因为它们保留晶格点,例如晶体中原子的位置。晶体学考克塞特群在分析重要的几何空间时也会出现;这给它们注入了很多有趣的结构。神秘的是,非晶体学的考克塞特群仍然拥有这种美丽的结构,尽管没有几何解释。例如,每个 Coxeter 群都有一个关联的 Hecke 代数,通过将该代数中的元素相乘,可以产生称为结构系数的数字。对于晶体学 Coxeter 群,这些系数总是非负的,因为它们正在计算某些东西。然而,非负结果总体成立。该项目的根本目标是找到 Coxeter 群中明显结构的组合和代数描述,以帮助解释这些神秘现象。研究的主要对象是赫克代数的分类表示,其中通常的反射被“反射函子”取代,“反射函子”不是在某个 n 维空间上充当对称性,而是在数学中其他重要代数的表示所附加的空间上起作用。在这个研究项目中,赫克代数的分类表示理论将沿着三个方向进行研究。第一种方法是将对角化的概念从线性代数提升到分类表示理论。例如,辫子群中的全扭曲及其在赫克代数中的图像在任何有限维表示中都是可对角化的。在与 Hogancamp 的合作中,我的目标是证明分类全扭曲是“绝对可对角化的”。这使得人们能够将赫克代数表示的大部分结构理论提升到分类水平。  在第二种方法中,我将与 Williamson 和 Juteau 一起研究仿射 Weyl 群的某些分类表示,这对于模表示理论及其量子变形具有重要意义。目标是计算局部交集形式,这将解释类别如何在有限特征中退化。该计算将给出以前未知的代数群的模表示的特征公式。在第三种方法中,当量子参数是单位根时,我将与杨一起找到上述量子变形的代数描述。这与复杂反射群的分类有关,这是一个悬而未决的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
                item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi }} 
- 发表时间:{{ item.publish_year }} 
- 期刊:
- 影响因子:{{ item.factor }}
- 作者:{{ item.authors }} 
- 通讯作者:{{ item.author }} 
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ patent.updateTime }}
Benjamin Elias其他文献
Novel phosphonated bicyclic frameworks from Diels–Alder reaction as chelating agents of di- and trivalent metal cations
- DOI:10.1016/j.tetlet.2011.07.116 
- 发表时间:2011-10-05 
- 期刊:
- 影响因子:
- 作者:Elise Villemin;Benjamin Elias;Raphaël Robiette;Koen Robeyns;Marie-France Herent;Jean-Louis Habib-Jiwan;Jacqueline Marchand-Brynaert 
- 通讯作者:Jacqueline Marchand-Brynaert 
The great strides of iron photosensitizers for contemporary organic photoredox catalysis: On our way to the holy grail?
当代有机光催化中铁光敏剂的巨大进步:我们走向圣杯的道路?
- DOI:10.1016/j.ccr.2023.215522 
- 发表时间:2024-02-01 
- 期刊:
- 影响因子:23.500
- 作者:Felix Glaser;Akin Aydogan;Benjamin Elias;Ludovic Troian-Gautier 
- 通讯作者:Ludovic Troian-Gautier 
Photoinduced One-Electron Chloride Oxidation in Water Using a Pentacationic Ir(III) Photosensitizer.
使用五阳离子 Ir(III) 光敏剂在水中光诱导单电子氯化物氧化。
- DOI:10.1021/jacs.4c00478 
- 发表时间:2024 
- 期刊:
- 影响因子:15
- 作者:Milan Vander Wee;Benjamin Elias;L. Troian‐Gautier 
- 通讯作者:L. Troian‐Gautier 
Polyphenism of visual and chemical secondary sexually-selected wing traits in the butterfly Bicyclus anynana: How different is the intermediate phenotype?
蝴蝶 Bicyclus annana 视觉和化学次级性选择翅膀特征的多态性:中间表型有何不同?
- DOI:10.1371/journal.pone.0225003 
- 发表时间:2019 
- 期刊:
- 影响因子:3.7
- 作者:D. Muller;Benjamin Elias;L. Collard;Christophe Pels;M. Holveck;C. Nieberding 
- 通讯作者:C. Nieberding 
Chloride, Bromide, and Iodide Photooxidation in Acetonitrile/Water Mixtures Using Binuclear Iridium(III) Photosensitizers.
使用双核铱 (III) 光敏剂对乙腈/水混合物中的氯化物、溴化物和碘化物进行光氧化。
- DOI:10.1021/acs.inorgchem.3c02648 
- 发表时间:2023 
- 期刊:
- 影响因子:4.6
- 作者:Simon De Kreijger;Benjamin Elias;L. Troian‐Gautier 
- 通讯作者:L. Troian‐Gautier 
Benjamin Elias的其他文献
{{
              item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi }} 
- 发表时间:{{ item.publish_year }} 
- 期刊:
- 影响因子:{{ item.factor }}
- 作者:{{ item.authors }} 
- 通讯作者:{{ item.author }} 
{{ truncateString('Benjamin Elias', 18)}}的其他基金
Categorical and Diagrammatic Representation Theory
分类和图解表示理论
- 批准号:2201387 
- 财政年份:2022
- 资助金额:$ 46.29万 
- 项目类别:Continuing Grant 
FRG: Collaborative Research: Algebra and Geometry Behind Link Homology
FRG:协作研究:链接同调背后的代数和几何
- 批准号:1800498 
- 财政年份:2018
- 资助金额:$ 46.29万 
- 项目类别:Standard Grant 
相似海外基金
Categorical representation theory and applications
分类表示理论及其应用
- 批准号:FT230100489 
- 财政年份:2023
- 资助金额:$ 46.29万 
- 项目类别:ARC Future Fellowships 
Conference: Categorical methods in representation theory and quantum topology
会议:表示论和量子拓扑中的分类方法
- 批准号:2204700 
- 财政年份:2022
- 资助金额:$ 46.29万 
- 项目类别:Standard Grant 
Categorical and Diagrammatic Representation Theory
分类和图解表示理论
- 批准号:2201387 
- 财政年份:2022
- 资助金额:$ 46.29万 
- 项目类别:Continuing Grant 
Categorical Representation Theory on an Algebraic Surface
代数曲面上的分类表示论
- 批准号:22K13889 
- 财政年份:2022
- 资助金额:$ 46.29万 
- 项目类别:Grant-in-Aid for Early-Career Scientists 
SBIR Phase I: Categorical Representation Learning in Artificial Intelligence
SBIR 第一阶段:人工智能中的分类表示学习
- 批准号:2109928 
- 财政年份:2021
- 资助金额:$ 46.29万 
- 项目类别:Standard Grant 
Research on Koszul AS-regular algebras from the categorical view of Non-commutative algebraic geometry and Representation theory
从非交换代数几何和表示论范畴角度研究Koszul AS-正则代数
- 批准号:21K13781 
- 财政年份:2021
- 资助金额:$ 46.29万 
- 项目类别:Grant-in-Aid for Early-Career Scientists 
Graphical and Categorical Methods in Representation Theory
表示论中的图解和分类方法
- 批准号:2101783 
- 财政年份:2021
- 资助金额:$ 46.29万 
- 项目类别:Standard Grant 
NSF-BSF: Categorical Methods in Representation Theory of Lie Superalgebras
NSF-BSF:李超代数表示论中的分类方法
- 批准号:2001191 
- 财政年份:2020
- 资助金额:$ 46.29万 
- 项目类别:Standard Grant 
Categorical Diagonalization, Representation Theory, and Link Homology
范畴对角化、表示论和链接同调
- 批准号:2034516 
- 财政年份:2019
- 资助金额:$ 46.29万 
- 项目类别:Standard Grant 
Categorical symmetries in representation theory
表示论中的范畴对称性
- 批准号:DP180103150 
- 财政年份:2018
- 资助金额:$ 46.29万 
- 项目类别:Discovery Projects 

 刷新
              刷新
            
















 {{item.name}}会员
              {{item.name}}会员
            



